Isometric Stochastic Flows on Spheres1

Ming Liao2

Received October 9, 1997; revised June 10, 1998

We consider isometric stochastic flows on the sphere S^{n-1} with the same one point motion. In particular, we will show that when $n > 3$, the set of such flows with Brownian motion as one point motion can be represented by a cube in some Euclidean space.

KEY WORDS: Brownian motion; stochastic flows.

1. INTRODUCTION

Let S^{n-1} be the $(n - 1)$-dimensional sphere considered as the unit sphere embedded in R^n. Suppose it is subject to random perturbation. The motion of the sphere can be described by a stochastic flow g_t consisting of isometric transformations on S^{n-1}, hence will be called an isometric stochastic flow, whereas the motion of a fixed point on the sphere is a diffusion process x_t on S^{n-1}. We are concerned with the following question: Does the motion of a point on the sphere determine the motion of the sphere? More precisely, can two different isometric stochastic flows on S^{n-1} have the same one point motion? Here, we identify two stochastic processes when their distributions are the same.

All the isometric transformations on S^{n-1} form the orthogonal group $O(n)$ whose identity component is $SO(n)$. The stochastic flow g_t may be regarded as a right invariant diffusion process in $SO(n)$ starting at the identity element. Here, the right invariance of g_t means $\forall g \in SO(n)$, the process $g_t g$ has the same distribution as g_t starting at $g_0 g$. Recall the term diffusion process refers to a family of processes with arbitrary starting points.

When $n = 3$, we have proved in Liao4 that the one point motion uniquely determines the motion of the sphere. The solution is based on the

1 Supported in part by NSF DMS-9703693.

2 Department of Mathematics, Auburn University, Auburn, Alabama 36849. E-mail: liaomin@mail.auburn.edu.
fact that $SO(3)$ is a rank one group so that the adjoint action is transitive on the unit sphere in the Lie algebra of $SO(3)$. In the present paper, we will see that in general there are infinitely many isometric stochastic flows with the same one point motion on S^{n-1} for $n > 3$, and in particular we will show that the set of isometric stochastic flows on S^{n-1} with the Brownian motion as one point motion can be represented by a cube in some Euclidean space with its center representing the Brownian motion in $SO(n)$ and boundary points representing the degenerate flows.

We can state a more general version of this question. Let M be a (smooth) manifold and let G be a Lie transformation group on M with identity element e. A stochastic flow on M consisting of transformations in G is a right invariant diffusion process g_t in G with $g_0 = e$, which will also be called a G-flow. We may ask whether two different G-flows can have the same one point motion.

Any right invariant differential operator on G induces a differential operator on M. In particular, the generator of g_t induces the generator of the one point motion of g_t. Since the generator determines the distribution of the process, our question can be rephrased as whether two different right invariant diffusion generators on G can induce the same operator on M.

Some basic definitions will be given more precisely in the next section for general M and G. Part of this section is taken from Liao.\(^\text{(4)}\) We will follow the ideas in Section II.2 of Helgason\(^\text{(1)}\) to introduce polynomial functions to represent right invariant differential operators on G. In Section 3, we will determine the space of quadratic polynomials which induce the zero operator on S^{n-1} for $G = SO(n)$, and as a consequence, we will establish the previously mentioned representation of the set of G-flows of the Brownian motion in S^{n-1} by a cube. In the last section, we will consider the situation on S^3 with $G = SO(4)$. In this case, the cube becomes the interval $[-1, 1]$ and the degenerate flow represented by 1 lies in a subgroup of $SO(4)$ which can be identified with S^3, in particular, the Brownian motion in S^3 becomes an isometric stochastic flow when S^3 is regarded as a subgroup of $SO(4)$.

2. SOME GENERAL DISCUSSION

Let M be a (smooth) d-dimensional manifold and denote by $\mathcal{D}(M)$ the space of smooth functions on M. A differential operator A on M is the generator of a diffusion process x_t on M if it has the following expression under local coordinates (x^1, x^2, \ldots, x^d).

$$A = \sum_{j,k=1}^{d} a_{jk}(x) \frac{\partial^2}{\partial x^j \partial x^k} + \sum_{i=1}^{d} b_i(x) \frac{\partial}{\partial x^i}$$