Wetting Phenomena in bcc Binary Alloys

R. Leidl, 2, 3 A. Drewitz, 2 and H. W. Diehl 2

We study the influence of the surface orientation on the wetting behavior of bcc binary alloys, using a seminfinite lattice model equivalent to a nearest-neighbor Ising antiferromagnet in an external magnetic field. This model describes alloys that exhibit a continuous $B2A2$ order-disorder transition, such as FeAl or FeCo. For symmetry-breaking surfaces like (100), an effective ordering surface field $g_1 \neq 0$ emerges. Such a field not only crucially affects the surface critical behavior at bulk criticality, but also gives rise to wetting transitions below the critical temperature T_c. Starting from the mean-field theory for the lattice model and making a continuum approximation, a suitable Ginzburg–Landau model is derived. Explicit results for the dependence of its parameters (e.g., of g_1) on the microscopic interaction constants are obtained. Utilizing these in conjunction with Landau theory, the wetting phase diagram is calculated.

KEY WORDS: antiphase boundary; bcc binary alloys; Ginzburg–Landau models; surface critical behavior; wetting transitions.

1. INTRODUCTION

Surface critical behavior at bulk critical points can be divided into distinct universality classes [1]. For a given bulk universality class, only gross surface properties determine which surface universality class applies, such as whether or not the surface interactions exceed or are equal to a certain critical enhancement or whether a surface field g_1 coupling to the local order parameter exists. Recently it has been shown that the universal critical behavior at the surface of a bcc Ising antiferromagnet and of a binary alloy undergoing a continuous order–disorder bulk transition depends crucially on the orientation of the surface with respect to the crystal axes.

2 Fachbereich Physik, Universität-Gesamthochschule Essen, D-45117 Essen, Germany.
3 To whom correspondence should be addressed.

1219
The basic mechanism underlying this intriguing behavior is the interplay between broken translational invariance perpendicular to the surface and the symmetry with respect to sublattice ordering. For certain “symmetry-breaking” orientations an “effective” ordering surface field $g_1 \neq 0$ emerges, which depends on physical parameters like temperature and bulk composition of the alloy. That such a field exists has been pointed out in Ref. 4 in order to explain the persistence of surface order at a (100) surface above the bulk critical temperature T_c, detected in a Monte Carlo simulation of the $B2-A2$ order-disorder transition in FeAl.

The situation encountered for symmetry-breaking surfaces closely resembles the critical adsorption of fluids, where generally $g_1 \neq 0$ [5]. However, in that case the microscopic origin of g_1 is quite different: it is an external field reflecting, e.g., the preference of the wall for one of the two components of the binary liquid mixture. The transition that takes place in the presence of a field $g_1 \neq 0$ on approaching the bulk critical point has been called normal in Ref. 6. If $g_1 = 0$ (and the surface interactions are not too strongly enhanced), another transition, called ordinary, occurs. In accordance with the fact that g_1 is a relevant scaling field, the ordinary and normal transitions represent different surface universality classes.

In Refs. 2 and 3 the focus was on the behavior at $T = T_c$ and a clear identification of the normal transition, which may also be regarded as a critical point wetting phenomenon [7]. However, since g_1 generally stays nonzero away from T_c for symmetry-breaking surfaces, a variety of wetting phenomena may occur for $T < T_c$. Below we determine the wetting phase diagram for a (100) surface within the mean-field approximation, utilizing the continuum model derived in Ref. 3. Our work complements previous studies on wetting in fcc Ising antiferromagnets or binary alloys [8] as well as on interface roughening at an antiphase boundary in the [100] direction in bcc binary alloys [9].

The organization of the paper is as follows. In the next section (Section 2) we define our model, explain the difference between symmetry-breaking and symmetry-preserving surfaces, and then briefly discuss the discrete mean-field equations. In Section 3 we introduce the Ginzburg–Landau model for the (100) surface derived in Ref. 3. This is then used in Section 4 to determine the wetting phase diagram.

2. LATTICE MODEL

2.1. Definition

To model the continuous $B2-A2$ order-disorder transition in the binary (AB) alloys FeAl or FeCo, we consider a bcc Ising antiferromagnet