A NOTE ON THE DYNAMIC FAILURE OF PMMA

D. Rittel
Faculty of Mechanical Engineering
Technion
32000 Haifa, Israel
email: merittel@tx.technion.ac.il

Abstract. This paper reports our results on the investigation of dynamic failure of PMMA. Two stages have been previously identified. Kolsky (1949) applied very small strains and noted a hysteretic stress-strain behavior. Walley et al. (1989, 1994) and Rittel (2000) reported a large stress drop past a maximum and reached relatively large strains for this material. Final failure of the specimen corresponded to its shattering. In the present work we performed interrupted dynamic loading tests, so that a stage could be reached at which a well developed network of microcracks forms without further evolution to cause final failure. This intermediate stage, between lack of apparent damage and complete comminution is identified as the region of initial stress decrease, past a maximum value.

1. Introduction. Dynamic failure of polymethylmethacrylate (PMMA) is considered as the brittle failure of a viscoelastic material for which high strain rate causes a predominantly elastic response. In his classical paper, Kolsky (1949) described what is currently known as the Kolsky apparatus (Split Hopkinson pressure bar), as a means to investigate high strain rate behavior of various materials. Among these materials, the dynamic compressive mechanical response of PMMA ("Perspex") was investigated. In this paper, a marked hysteretic behavior was noticeable, as the overall strain range was limited to a few percent (about 0.02). The author did not mention specimen failure, as the maximum stress level reached remained relatively innocuous for this material. Detailed studies of the dynamic behavior of various polymers, including PMMA, can be found in the work of Walley et al. (1989, 1994). These authors investigated the dynamic mechanical response of the material and they also documented the failure process using high-speed photography. The reported strain range is higher than that investigated by Kolsky, reaching 0.2. The recording of the failure process reveals cracking and shattering of the various investigated polymers, as failure mechanisms. Emphasis was not put on the correlation between the evolution of the damage and that of the stress-strain curve. In a different context, Rittel (2000)
presented results on the compressive dynamic stress-strain behavior of commercial PMMA, using a Kolsky bar. Here too, large strains were reached as the specimen failed completely by shattering. In these experiments, only small fragments of the material could (sometimes) be recovered. The stress-strain curve comprised three phases: an initially rising part (up to $\varepsilon=0.15$) which reaches a plateau, followed by a slower decrease (up to $\varepsilon=0.4$). The slow decrease is characteristic of gradual damage evolution (as opposed to brutal). However, none of these works did specifically address the various stages of the dynamic damage (initiation and growth) in relation with the stress-strain characteristics.

This note reports our results on the evolution of the dynamic damage process with the loading, thus bringing additional and complementary information to that found in the above mentioned work.

2. Experimental procedure. A total of 21 disks, were machined through the thickness of a commercial 12.5 mm thick PMMA plate. The specimen thickness to diameter ratio was kept to 0.5 as recommended, in most experiments. However, to increase the strain rate, the specimen thickness had to be reduced to about 2 mm which violated this recommendation. The disks were subsequently tested in a standard 7075 Aluminum–12.5 mm diameter Kolsky bar (Kolsky, 1949). The specimen-bar interfaces were lubricated with petroleum jelly, as recommended in the literature (Walley et al., 1989). The stresses and strains were determined from the incident and transmitted gage signals, after their correction for geometrical dispersion (Lifshitz and Leber, 1994). The strain rate varied according to the disk thickness. A combination of strain rates and maximum strain achieved was explored by selecting the thickness of the disk and controlling the velocity of the striker. The typical strain rates ranged from 3000s^{-1} to 15000s^{-1}.

3. Results. Impact experiments show that commercial PMMA is a brittle material, capable of sustaining a limited inelastic deformation at high strain rate prior to shattering.

Preliminary experiments showed two kinds of behavior: either the material sustained the impact without apparent damage, or it shattered into a multitude of small fragments. Representative stress-strain curves are shown for each case in Figure 1a (loading-unloading) and 1b (loading and shattering) respectively. The specimen corresponding to Figure 1a discloses a hysteretic behavior, but it must be emphasized that the specimen has not been stressed until fracture. Examination under the light microscope did not reveal any evidence of damage.

The specimen corresponding to Figure 1b behaved quite differently as it shattered, and a well defined peak stress can be observed prior to fracture. In Figure 1a, we have included Kolsky’s data and in Figure 1b Walley et al. (1989) data. In both cases a good agreement with these authors is noticeable.