ON A SUBVARIETY OF SEMI-DE MORGAN ALGEBRAS

C. PALMA and R. SANTOS (Lisbon)

Abstract. A characterization of principal congruences of the subvariety C of semi-De Morgan algebras is given. This characterization is applied to determine the subdirectly irreducible algebras of the variety C and to describe a poset such that the lattice of its order ideals is isomorphic to the lattice of subvarieties of C.

1. Introduction

The equational class of semi-De Morgan algebras was introduced by Sankappanavar in [15]. It consists of bounded distributive lattices with an additional unary operation and it contains the variety of pseudo-complemented distributive lattices (also called p-lattices) and $K_{1,1}$, one of the subvarieties of Ockham algebras which includes De Morgan algebras.

Sankappanavar has continued the investigation of semi-De Morgan algebras in [16] and [17], where he concentrated on the class of demi-pseudo-complemented lattices, also called demi-p-lattices, an important subvariety of semi-De Morgan algebras which generalizes p-lattices.

In [9] Hobby developed a duality for semi-De Morgan algebras which is a Priestley-type duality for distributive lattices endowed with an additional binary relation. He used this duality to find the largest subvariety of semi-De Morgan algebras with the congruence extension property. This variety which Hobby denoted by C contains both $K_{1,1}$ and the equational class of demi-p-lattices.

In this paper we study some properties of the variety C. In Section 3 we characterize the principal congruences on C, extending the corresponding characterization for demi-p-lattices due to Sankappanavar [16], and for the variety $K_{1,1}$ due to J. Berman [3] and to M. Ramalho and M. Sequeira

1Work done within the activities of CAUL and partly supported by FCT and "Programa Ciência, Tecnologia e Inovação do Quadro Comunitário de Apoio".

Key words and phrases: semi-De Morgan algebra, principal congruence, subdirectly irreducible algebra.

1991 Mathematics Subject Classification: primary: 06D15, 06D90, 06D99, secondary: 08A30, 08B26.

0236-5294/3/20.00 © 2003 Akadémiai Kiadó, Budapest
[12]. As an application, it is shown that C has equationally definable principal congruences, a result which strengthens Hobby’s result that this variety has the congruence extension property. In Section 4 we characterize the subdirectly irreducible algebras of the variety C. The subdirectly irreducible demi-p-lattices were characterized by Sankappanavar in [16] and the subdirectly irreducible algebras of the variety $K_{1,1}$ were identified in [14] and also in [2]. We use these results and the characterization of principal congruences to prove that apart from the subdirectly irreducible algebras of the varieties of demi-p-lattices and $K_{1,1}$ there are, up to isomorphism, three more subdirectly irreducible algebras in C. We consider the set of isomorphism classes of finite subdirectly irreducible algebras of the variety C under the ordering of homomorphic image of a subalgebra and we present the Hasse diagram of this poset. Using a theorem of B. Davey [6], we prove that the lattice of subvarieties of C is isomorphic to the lattice of order-ideals of this poset. In Section 5 we give defining identities for some subvarieties of C.

2. Preliminaries

We start by recalling some definitions and essential results as well as some notation, previously adapted by other authors, which will be useful in the later sections.

Definition 2.1. An Ockham algebra is an algebra $(A, \lor, \land, ', 0, 1)$ for which $(A, \lor, \land, 0, 1)$ is a bounded distributive lattice satisfying the identities

$$(x \lor y)' \approx x' \land y', \quad (x \land y)' \approx x' \lor y', \quad 0' \approx 1 \quad \text{and} \quad 1' \approx 0.$$

The subvariety $K_{1,1}$ of the variety of Ockham algebras, first considered by J. Berman in [3], is the class of Ockham algebras which satisfy $x' \approx x'''$. An algebra of $K_{1,1}$ is a De Morgan algebra if and only if it satisfies $x' \approx x$. In what follows DUA will denote the equational class of De Morgan algebras.

The subdirectly irreducible algebras of the variety $K_{1,1}$ (sometimes also denoted by $P_{3,1}$) were obtained by Sankappanavar in [14] and independently by Beazer in [2]. Their diagrams are presented in [5] on pages 70 and 71 and the poset of these subdirectly irreducible algebras ordered according to a theorem of Davey [6] is presented in [5] on page 91.

For an easier understanding of this paper we recall that the subdirectly irreducible algebras of $K_{1,1}$ were denoted in [5] by: B, K, M, S, \overline{S}, S_1, K_1, K_2, K_3, K_4, M_1, M_2, L, \overline{L}, N, \overline{N} and B_1.

It is well known that the subdirectly irreducible De Morgan algebras are B, K and M with diagrams as in Fig. 1.

Definition 2.2. An algebra $L = (L, \lor, \land, ', 0, 1)$ is a semi-De Morgan algebra if the following five conditions hold $(x, y \in L)$: