AN EQUIVALENT FLAT CONDITION
H. Kim and J. Kim

Abstract: We show that on an 8-dimensional manifold with Euler characteristic zero every semiflat metric must be flat.

Keywords: 8-dimensional manifold, Euler characteristic zero, semiflat metric, flat

1. Introduction

The local geometry of a manifold provides us with information about its global topology. For instance, the generalized Gauss–Bonnet theorem [1, 2] states that the Euler characteristic χ of a compact oriented Riemannian manifold M^{4k} can be written as the integral

$$\chi = \frac{2}{V} \left[\frac{(2k)!}{4k} \right] \int_M \text{trace}(\ast R_{2k} \ast R_{2k}) \, dV$$

where V is the volume of the Euclidean unit $4k$-sphere, dV is the volume element of M, \ast is the Hodge \ast-operator, and R_{2k} is the $2k$-curvature operator. If R_{2k} commutes with \ast, i.e., $R_{2k} \ast = \ast R_{2k}$, we say that the Thorpe condition holds and call the metric a Thorpe metric and the manifold a Thorpe manifold. In the 4-dimensional case every Thorpe metric is Einstein [3, 4]. For dimensions $4k$ higher than 4, Thorpe manifolds were studied in [4]. On the other hand, if R_{2k} anticommutes with \ast, i.e., $R_{2k} \ast = - \ast R_{2k}$, then we say that the anti-Thorpe condition holds and call the metric an anti-Thorpe metric and the manifold an anti-Thorpe manifold. From now on, we call a Riemannian metric half-flat if it is both scalar-flat and conformally flat; in other words, if its scalar curvature and Weyl tensor both vanish. In particular, in dimension 4, an anti-Thorpe metric is half-flat, and vice versa. However, in dimension $4k$ higher than 4, an anti-Thorpe metric is not necessarily half-flat, and vice versa. For instance, let T^{2k+1} be a flat torus and let M^{2k-1} be some compact oriented nonflat Riemannian manifold. Then the Riemannian product $T^{2k+1} \times M^{2k-1}$ is an anti-Thorpe manifold. However, in general, this product metric is not half-flat. On the other hand, let S^{4k} be a standard $4k$-sphere and let H^{4k} be a standard $4k$-hyperbolic manifold; then the product metric of S^{4k} and H^{4k} is half-flat. However, this product metric is not anti-Thorpe. We call a Riemannian metric on a compact oriented Riemannian manifold M^{4k} semiflat if it satisfies both the half-flat condition and the anti-Thorpe condition. A semiflat metric is not necessarily flat. For instance, the product metric of S^{4k+2} and H^{4k+2} is semiflat but not flat. The purpose of this article is to see when a semiflat metric is flat.

Theorem 1. On a compact oriented 8-dimensional manifold with $\chi = 0$ every semiflat metric is flat.

The following is a crucial ingredient in the proof of this theorem:

Lemma 1. If (M, g) is a Riemannian manifold of dimension 8 then

$$\text{trace } R_4 = \frac{1}{22} \left(\frac{1}{6} \right) \left(\frac{30}{56} s^2 - \frac{10}{3} |\text{ric}_o|^2 + 4 |W|^2 \right)$$

where s is the scalar curvature, ric_o is the traceless Ricci tensor, i.e., $\text{ric}_o = \text{ric} - \frac{s}{8} g$ and W is the Weyl tensor.

From Lemma 1 we can observe that trace R_4 is nonpositive provided that the metric is half-flat.

The authors wish to acknowledge the financial support of the Korea Research Foundation made in the program year of 1998.

0037-4466/03/4405–0817 $25.00 \copyright$ 2003 Plenum Publishing Corporation
2. The p-Curvature Operator

Let M be a Riemannian manifold of dimension n, and let $\Lambda^p(M)$ denote the bundle of p-vectors of M. $\Lambda^p(M)$ is a Riemannian vector bundle, with an inner product on the fiber $\Lambda^p(x)$ above a point x [2]. Let R denote the covariant curvature tensor of M. For each even $p > 0$, define the p-curvature tensor R_p of M to be the covariant tensor field of order $2p$ given by

$$R_p(u_1, \ldots, u_p, v_1, \ldots, v_p) = \frac{1}{2^{p/2} p!} \sum_{\alpha, \beta \in S_p} \varepsilon(\alpha)\varepsilon(\beta) R(u_{\alpha(1)}, u_{\alpha(2)}, v_{\beta(1)}, v_{\beta(2)}) \cdots R(u_{\alpha(p-1)}, u_{\alpha(p)}, v_{\beta(p-1)}, v_{\beta(p)})$$

where $u_i, v_j \in T_x M$, S_p denotes the group of permutations of $(1, \ldots, p)$, and, for $\alpha \in S_p$, $\varepsilon(\alpha)$ is the sign of the permutation α.

The tensor R_p has the following properties: it is alternating in the first p variables, alternating in the last p variables, and invariant under the replacement of the first p variables with the last p variables. Hence, at each point $x \in M$, R_p can be regarded as a symmetric bilinear form on $\Lambda^p(x)$. On using the inner product on $\Lambda^p(x)$, R_p at x may then be identified with a selfadjoint linear operator R_p on $\Lambda^p(x)$. Explicitly, this identification is given by

$$(R_p(u_1 \wedge \cdots \wedge u_p), v_1 \wedge \cdots \wedge v_p) \equiv R_p(u_1, \ldots, u_p, v_1, \ldots, v_p)$$

with $u_i, v_j \in T_x M$. From now on, we will use the same notations for the p-curvature operators and the p-curvature tensors. If $p = n$ then the space $\Lambda^n(x)$ is one-dimensional and hence the selfadjoint linear operator $R_n : \Lambda^n(x) \rightarrow \Lambda^n(x)$ is a scalar multiple of the identity. More explicitly, when expressed globally, the line bundle homomorphism $R_n : \Lambda^n(M) \rightarrow \Lambda^n(M)$ is $R_n = KI$ where I is the identity automorphism of $\Lambda^n(M)$ and K is the Lipschitz–Killing curvature of M [5]. Furthermore, for $x \in M$

$$K(x) = R_n(e_1, \ldots, e_n, e_1, \ldots, e_n)$$

where $\{e_1, \ldots, e_n\}$ is any orthonormal basis for $T_x M$.

The generalized Gauss–Bonnet theorem [1] expresses the Euler characteristic χ of a compact oriented Riemannian manifold of even dimension n as the integral

$$\chi = \frac{2}{c_n} \int_M K dV$$

where K is the Lipschitz–Killing curvature of M, c_n is the volume of the unit Euclidean n-sphere, and dV is the volume element of M.

We see now that the Lipschitz–Killing curvature K of M can be expressed in terms of R_p and the Hodge $*$-operator.

If M be an oriented Riemannian manifold of even dimension n, then according to [2] the Lipschitz–Killing curvature K of M can also be expressed as the function whose value at $x \in M$ is

$$\frac{p!(n-p)!}{n!} \operatorname{trace}(R_{n-p} \ast R_p),$$

where $p = 2, 4, 6, \ldots, (n-2)$. For an oriented Riemannian manifold of dimension $n = 4k$, we can consider the middle curvature operator R_{2k}, and if this operator satisfies the anti-Thorpe condition,

$$R_{2k} \ast = - \ast R_{2k},$$

then, since $\ast^2 = \operatorname{Id}$, the trace formula for K reduces to

$$K = -\frac{[(2k)]^2}{(4k)!} \operatorname{trace} R_{2k}^2 \leq 0$$

where equality holds if and only if $R_{2k} = 0$. From the above facts, we can easily infer a necessary condition for the existence of an anti-Thorpe metric.