Differentiation for Orders and Artinian Rings

Dedicated to Daniel Simson on the occasion of his 60th birthday

WOLFGANG RUMP
Mathematisch-Geographische Fakultät, Katholische Universität Eichstätt, Ostenstraße 26-28,
D-85072 Eichstätt, Germany. e-mail: wolfgang.rump@ku-eichstaett.de

(Accepted: December 2001)

Presented by K. W. Roggenkamp

Abstract. The method of differentiation for the category Λ-lat of lattices over an order Λ will be extended to integral almost Abelian categories \mathcal{A} instead of Λ-lat. In particular, this yields a differentiation for finitely generated left modules over left Artinian rings.

Key words: differentiation, localization, order, Artinian ring.

Introduction

Some powerful methods of representation theory are based on equivalences between categories related to module categories. Whereas tilting modules and so-called \star-modules provide equivalences between full subcategories of module categories (e.g., [6–9, 12, 24]), the Green correspondence [17] and its generalization [4] give equivalences between certain quotient categories. In all these cases, the equivalence is induced by a pair of adjoint functors.

In [21] we established an equivalence of the form

$$\tilde{\partial}_u: \Lambda$-lat$/[H] \longrightarrow \Lambda'$-lat$/$[B],$$

where Λ, Λ' are orders over a complete discrete valuation domain R, and Λ-lat denotes the category of Λ-lattices. Here the correspondence is functorial only in one direction. It is defined in terms of a hereditary morphism $u: P \hookrightarrow I$ in Λ-lat. In the most important case where the Λ-lattices between P and I form a chain $P = H_0 \subseteq H_1 \subseteq \cdots \subseteq H_n = I$, this means that P is projective and I injective in Λ-lat, and $H := H_0 \oplus \cdots \oplus H_n$ satisfies

$$\text{Hom}_\Lambda(P, I/P) = \text{Ext}_\Lambda(I/P, I) = \text{Ext}_\Lambda(H, H) = 0.$$

Then B is indecomposable projective and injective in Λ'-lat. Special cases of (0) are Zavadskij’s differentiation algorithms for representations of posets [29] and
tiled orders [30], and Simson’s differentiation algorithm [19, 25, 26] for socle-projective modules over peak algebras. If K is the quotient field of R, then $K \otimes_R \Lambda' \cong M_2(K \otimes_R \Lambda)$, and the equivalence (0) is induced by a functor $\delta_u: \Lambda\text{-lat} \to \Lambda'\text{-lat}$, called differentiation. In [22] we impose a weaker condition on u with the effect that $\Lambda'\text{-lat}$ in (0) has to be replaced by a full subcategory. Then u is called prehereditary. In this case, (0) implies a general version of Simson’s splitting theorem ([22], Theorem 4; cf. [27], Theorem 17.53).

In the present article, we extend the equivalence (0) to a very general class of categories instead of $\Lambda\text{-lat}$. In [23] we call these categories integral almost Abelian. They occur in various parts of representation theory, functional analysis, and topological algebra (see §1, and [23], §2). For example, if $(\mathcal{T}, \mathcal{F})$ is a hereditary torsion theory in an Abelian category \mathcal{C}, then the full subcategory \mathcal{F} of \mathcal{C} is integral almost Abelian. Conversely, every integral almost Abelian category \mathcal{A} arises in this way. This description, however, does not reveal the self-dual nature of such categories \mathcal{A}.

Let \mathcal{A} be integral almost Abelian. A morphism $p: P^a \to A$ is said to be a P-cover if every morphism $P \to A$ factors through p. An I-hull is defined in a dual way. We call a morphism $u: P \to I$ closed if u is regular (i.e. monic and epic), every object A has a P-cover and an I-hull, and u itself is a P-cover and an I-hull. Let $\text{reg}(\mathcal{A})$ denote the category of regular morphism $r: A_1 \to A_0$ in \mathcal{A} modulo homotopy. Then $\text{reg}(\mathcal{A})$ is integral almost Abelian (Proposition 4), and u can be regarded as an object $\overline{u} \in \text{reg}(\mathcal{A})$. By $ab[\overline{u}]$ we denote the full subcategory of objects $\overline{b} \in \text{reg}(\mathcal{A})$ such that some $u^a: P^n \to I^n$ satisfies $u^a = abc$ with regular $a, c \in \mathcal{A}$. A closed morphism u will be called prehereditary if $ab[\overline{u}]$ is Abelian. This concept is related to a weak form of localization (Theorem 1). If u is prehereditary, then $ab[\overline{u}]$ is contained in a full subcategory $\text{ab}[\overline{u}]$ of $\text{reg}(\mathcal{A})$ which is integral and almost Abelian. Furthermore, $\text{ab}[\overline{u}]$ can be recovered from $\text{ab}[\overline{u}]$ by localization, making regular morphisms invertible. Now let $\text{Reg}_{ab}(\mathcal{A})$ be the category of regular morphisms $a: G \to F$ in \mathcal{A} such that $\overline{a} \in \text{ab}[\overline{u}]$, every morphism $P \to G$ extends along u to a morphism $I \to F$, and every $F \to I$ restricts to a morphism $G \to P$. Then we prove a generalization of (0) with $\Lambda\text{-lat}$ replaced by \mathcal{A} and $\Lambda'\text{-lat}$ replaced by $\text{Reg}_{ab}(\mathcal{A})$ (Theorem 2). If P is projective and I injective in \mathcal{A}, we call $u: P \to I$ hereditary. In this case, $\text{Reg}_{ab}(\mathcal{A})$ is again integral almost Abelian (Proposition 9).

As a first application, we obtain a global version of (0) for orders Λ over a Dedekind domain. Secondly, we get a differentiation for left Artinian rings Λ (Theorem 3). For a semisimple left Λ-module S, the category $\Lambda\text{-lat} := \Lambda\text{-lat}\{S\}$ of finitely generated left Λ-modules M with $\text{Hom}_\Lambda(S, M) = 0$ is integral almost Abelian. If $u: P \Leftarrow I$ is hereditary in $\Lambda\text{-lat}$, there exists a left Artinian ring Λ' and a semisimple left Λ'-module S' such that an equivalence (0) holds for $\Lambda'\text{-lat} := \Lambda'\text{-lat}\{S'\}$. Note that in case S is indecomposable injective, $\Lambda\text{-lat}\{S\}$ consists of the finitely generated Λ-modules which do not possess a direct summand isomorphic to S.

...