On a Test Statistic for Linear Trend

J.M.P. ALBIN
Department of Mathematics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
Email: palbin@math.chalmers.se

D. JARUŠKOVÁ
Department of Mathematics, Faculty of Civil Engineering, Czech Technical University, Thákurova 7,
CZ-166 29 Prague 6, Czech Republic
Email: jarusk@mat.fv.cvut.cz

[Received August 5, 2002; Revised October 16, 2003; Accepted October 31, 2003]

Abstract. Let \(\{ W(s) \} \) be a standard Wiener process. The supremum of the squared Euclidian norm \(|Y(t)|^2 \), of the \(\mathbb{R}^2 \)-valued process \(Y(t) = (\sqrt{\frac{1}{12}} W(t), \sqrt{\frac{1}{3}} \int_0^t s \, dW(s) - \sqrt{\frac{3}{12}} W(t)), t \in [a, 1], \) is the asymptotic, large sample distribution, of a test statistic for a change point detection problem, of appearance of linear trend. We determine the asymptotic behavior \(P\{\sup_{t \in [a, 1]} |Y(t)|^2 > u\} \) as \(u \to \infty \), of this statistic, for a fixed \(a \in (0, 1) \), and for a “moving” \(a = a(u) \downarrow 0 \) at a suitable rate as \(u \to \infty \). The statistical interest of our results lie in their use as approximate test levels.

Keywords. change point detection, \(\chi^2 \)-process, extremes, Gaussian process, linear trend, Ornstein–Uhlenbeck process, test of linear trend

AMS 2000 Subject Classification. Primary—60G70
Secondary—60G10, 60G15, 62F12

1. Introduction

Let \(\{ W(t) \} \) be a standard Wiener process, and define

\[
Y(t) = \frac{W(t)}{\sqrt{t}} \cdot \frac{\sqrt{\frac{1}{12}} \int_0^t s \, dW(s) - \sqrt{\frac{3}{12}} W(t)}{\sqrt{\frac{3}{12}}},
\]

\[
= \frac{W(t)}{\sqrt{t}} \cdot \frac{\sqrt{\frac{3}{12}} W(t) - \sqrt{\frac{1}{12}} \int_0^t W(s) \, ds}{\sqrt{\frac{3}{12}}}.
\] (1)

We study the asymptotic behavior of

\[
P\left\{ \sup_{t \in [a, 1]} |Y(t)|^2 > u \right\}, \quad \text{as } u \to \infty,
\]
for a constant $\alpha \in (0, 1)$, as well as for a ‘moving’ $\alpha = \alpha(u) \downarrow 0$ at a certain suitable rate as $u \to \infty$.

Consider a change point detection problem of appearance of linear trend, where the null hypothesis $H_0 : X_i = \varepsilon_i$, for $i = 1, \ldots, n$ is tested against the alternative

$$H_1 : X_i = \begin{cases} a_0 + a_1 (i/n) + \varepsilon_i, & \text{for } i = 1, \ldots, k, \\ \varepsilon_i, & \text{for } i = k + 1, \ldots, n, \end{cases}$$

for some $k \in \mathbb{N}$ and $a_0, a_1 \in \mathbb{R}$. Here $\{\varepsilon_i\}_{i=1}^\infty$ is standardized discrete white noise. Under H_0, the test statistic

$$\max_{[n_0] \leq k \leq n} \frac{(\sum_{i=1}^k X_i)^2}{k} + \frac{(\sum_{i=1}^k ((i/n) - (k + 1)/(2n))X_i)^2}{(\sum_{i=1}^k ((i/n) - (k + 1)/(2n)))^2} \to \sup_{t \in [a, 1]} |Y(t)|^2, \text{ as } n \to \infty,$$

where \max denotes weak convergence. See Jarušková (2000). Hence the upper tail of the law of $\sup_{t \in [a, 1]} |Y(t)|^2$ becomes the asymptotic, large sample distribution.

In Section 2, for easy reference, we collect some facts from the literature on extreme value theory, that are required for the proofs of our results.

In Section 3, we state and prove our first main result, Theorem 1. This theorem has the following immediate consequence, for the upper tail of $\sup_{t \in [a, 1]} |Y(t)|^2$:

$$\lim_{u \to \infty} \frac{e^{\alpha^2/2}}{u} \mathbb{P} \left\{ \sup_{t \in [a, 1]} |Y(t)|^2 > u \right\} = - \ln(\alpha), \text{ for } \alpha \in (0, 1). \quad (2)$$

In Section 4, we state and prove our second main result, Theorem 2. This theorem has the following immediate consequence:

$$\lim_{u \to \infty} \mathbb{P} \left\{ \sup_{t \in [\exp(-e^{\alpha^2}/u), 1]} |Y(t)|^2 > u + 2x \right\} = 1 - \exp\{-e^{-x}\}, \text{ for } x \in \mathbb{R}. \quad (3)$$

The literature on extremes of the norm of vector-valued Gaussian includes, for example, Sharpe (1978), Lindgren (1980, 1989), Albin (1990, Section 4; 2000, Section 5), and Piterbarg (1994). However, our component processes Y_1 and Y_2 are dependent, while the literature on non-differentiable processes only deal with independent components, and thus do not apply to Y.

On the other hand, it is possible to derive our Theorem 1 from the literature on extremes of Gaussian fields, see Remark 1 below. However, this does not help for the proof of our Theorem 2, since that requires the proof of Theorem 1 anyway (see Section 2). In other words, an alternative, but longer way to our results, would be to use Gaussian field theory.