Basic properties of apatite cement containing spherical tetracalcium phosphate made with plasma melting method

K. ISHIKAWA*, S. MATSUYA, M. NAKAGAWA, K. UDÔH
Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka, 812-8582, Japan
E-mail: ishikawa@dent.kyushu-u.ac.jp

K. SUZUKI
Department of Biomaterials, Science of Functional Recovery and Reconstruction, Graduate School of Medicine and Dentistry, Okayama University, 2-5-1 Shikata, Okayama, 700-8525, Japan

Apatite cement (AC) can be injected through syringe and forms apatite mass. Therefore, AC is very useful for a minimally invasive surgical operation aimed for the reconstruction of bone defects. However, injectability of current AC is not satisfactory for its clinical use. In this investigation, therefore, spherical tetracalcium phosphate (s-TTCP) was prepared with plasma melting method and its effect on injectability were evaluated as well as other basic properties of AC. We found much better handling property and injectability when we used s-TTCP as a component of AC (s-AC). For example, cement spread area used as an index of consistency of the s-AC paste was 512 mm² whereas that of ordinary AC with irregular TTCP (i-AC) was 158 mm² when powder to liquid mixing ratio was 2.5. However, diametral tensile strength of set s-AC (1.4 MPa) was significantly lower than that of set i-AC (10.7 MPa) when the powder to liquid ratio was 4.0. X-ray powder diffraction analysis revealed limited formation of apatite in the case of s-AC. Although there are some drawbacks, we feel the use of spherical particle is very useful to improve the injectability of AC. Therefore, it is important to find suitable method to prepare spherical powder as the component of AC.

© 2004 Kluwer Academic Publishers

1. Introduction

Many types of apatite cement (AC) were proposed based on the fundamental invention made by Drs. Brown and Chow [1–10]. AC consists of powder and liquid phases and forms apatite (AP: Ca₁₀₋₅(PO₄)ₓ(PO₄)₆₋ₓ(OH)₂₋ₓ) upon mixing based on the dissolution of powder phase and precipitation of AP. The most stable phase thermodynamically, followed by the interlocking of precipitated AP crystals [11]. Animal studies as well as clinical evaluation demonstrated that AC shows excellent tissue response and good osteoconductivity [12–16]. One of the key advantages of AC in contrast to other AP related biomaterials is its setting character. Filling the bone defect with AC results in the reconstruction of bone defect with the apatite having exactly the same shape with the bone defect. Setting character of AC also allows injection of AC paste through syringe. This behavior is very important with respect to the minimally invasive surgical operation [17–19]. For example, injection of AC to the deformed condyle through syringe results in the expansion of the condyle without open surgery.

However, injectability of current AC is unfortunately not satisfactory for its clinical use. Injectability of AC is governed by many factors including the powder to liquid mixing ratio and the use of viscous chemicals [20–23]. However, lower powder to liquid mixing ratio results in the lower mechanical strength and use of viscous chemicals sometimes reduces the tissue response to AC [10]. On the other hand, shape of the powder is expected to have effects on injectability. Powder with spherical shape may contribute good injectability of AC. In fact, it is reported that sphericalization of Portland cement increased its handling property [24]. Many methods were reported on how to prepare spherical powder [24]. Among them, sphericalization method using the surface tension is known to be a good method to prepare ideal spherical powder [24].

The objective of this study was therefore to evaluate the usefulness of AC using spherical tetra-
2. Materials and methods

2.1. Preparation of apatite cement

Spherical tetracalcium phosphate (TTCP; Ca$_4$(PO$_4$)$_2$O) particles were prepared at Netsuren Co. (Kanagawa, Japan) by plasma melting method using commercially obtained TTCP (Taihei Chemical, Osaka, Japan). In brief, TTCP particle was dropped into reaction vessel filled with Ar where the TTCP was melted by the heat generated by plasma. The irregular form TTCP became spherical due to surface tension and quenched at room temperature during dropping. The irregular form TTCP and spherical form TTCP are denoted as i-TTCP and s-TTCP, respectively, in the following text.

s-TTCP or i-TTCP was mixed with dicalcium phosphate anhydrous (DCPA; CaHPO$_4$, J. T. Baker Chemical Co., NJ) with a medium particle size of 1.2 μm so that the mixing ratio became equimolar using a mixer (SK-M2, Kyoritsu, Tokyo, Japan). The mixtures with i-TTCP and s-TTCP are denoted as i-AC and s-AC, respectively.

It is well known that the liquid phase of the AC affects the properties of AC a lot. For example, use of neutral sodium hydrogen phosphate aqueous solution shortens the setting time of AC; this AC is called fast-setting AC (fs-AC) [8, 25]. Use of sodium alginate or other viscous chemicals provide anti-washout ability to the AC; this type of AC is called anti-washout AC (aw-AC) [9, 15, 26, 27]. Although aw-AC shows much better handling property and injectability than conventional AC (c-AC) due to the use of a viscous chemical, sodium alginate, in its liquid phase, we used distilled water which is the liquid phase of c-AC in the present study to focus only on the effect of powder form on injectability and other basic properties of AC.

The powder phase and liquid phase which is distilled water, was mixed with spatula on glass with powder to liquid ratio (P/L ratio) of 1.5 or 4.0.

2.2. Consistency evaluation

The consistency of the cement paste was evaluated essentially according to the method set forth in international standard ISO1566 for dental zinc phosphate cement, in which consistency is defined as the diameter of the spread area of the cement paste when a glass plate (140 ± 0.5 g) is placed on 0.5 mL of the paste 3 min after mixing. In the present study, a 2 kg glass plate was placed on 0.2 cm2 of the cement paste and the spread area was measured after 3 min [27–29].

2.3. Injectability evaluation

As an index of injectability of the cement paste, load required to push out the 0.5 cm3 paste from 30 mm length 18 G syringe needle at a rate of 1 cm3·min$^{-1}$ was measured using universal testing machine.

2.4. Mechanical strength measurements

The mechanical strength of set AC was evaluated in terms of the diametral tensile strength (DTS). Cement paste was packed in a splitting cylindrical plastic mold (6 mm in diameter × 3 mm in height). Both ends of the mold were then covered by glass plates, clamped, and the paste set by storing in an incubator for 24 h at 37 °C and 100% relative humidity. The diameter and height of each specimen were measured with a micrometer. The samples were crushed with a cross-head speed of 10.0 mm·min$^{-1}$ using a universal testing machine (AGS-500A, Shimadzu, Kyoto, Japan). The DTS values used were averages of at least eight specimens. The bars in figures denote standard deviation. For statistical analysis, one-way factorial ANOVA and Fisher’s PLSD method as a post-hoc test were performed using Stat View 4.02 (Abacus Concepts, Berkeley, CA).

2.5. Powder X-ray diffraction (XRD)

The composition of the set AC was evaluated by means of powder X-ray diffraction (XRD). The XRD patterns of the vacuum-dried samples were recorded with a vertically mounted diffractometer system (Rint 2000, Rigaku Tokyo, Japan) using Ni filtered CuKα generated at 40 kV and 30 mA. The specimens were scanned from 3 to 60° 20 (where θ is the Bragg angle) in a continuous mode. JCPDS cards of 9-0432, 25-1137 and 9-0080 is used for as the reference of AP, TTCP and DCPA, respectively.

2.6. Scanning electron microscopy (SEM)

Morphology of the particles before and after sphericalization using plasma melting method the particle was observed using scanning electron microscope (SEM) (S-700; Hitachi Co., Tokyo, Japan) under an accelerating voltage of 20 kV after gold-coating.

3. Results

Fig. 1 shows the SEM pictures of i-TTCP and s-TTCP made with plasma spray method. As shown, shape of the i-TTCP particles is irregular and has pores on their surface. In contrast, s-TTCP made with plasma spray method is spherical as the name represents. We could find small pores on the surface of some s-TTCP.

Fig. 2 shows the powder XRD patterns of i-TTCP and s-TTCP. Basically, i-TTCP and s-TTCP showed the same patterns typical for tetracalcium phosphate. However, we

![Figure 1](image-url)
Figure 1 Typical SEM image of the tetracalcium phosphate. (a) i-TTCP; (b) s-TTCP