KINETICS OF DICHLOROCYCLOPROPANATION USING 4-(DIMETHYLOCTYLAMMONIUM) PROPANSULTAN AND 1,4-BIS(TRIETHYLMETHYLAMMONIUM)BENZENE DIBROMIDE AS NEW PHASE TRANSFER CATALYSTS

Maw-Ling Wang*a, Yu-Ming Hsiehb and Rong-Yeu Changb

*aDepartment of Chemical Engineering, Tung Hai University, Taichung, Taiwan 407, ROC
bDepartment of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan 300, ROC

Received January 6, 2003
In revised form May 30, 2003
Accepted June 17, 2003

Abstract

The novel phase transfer catalysts S-8 [4-(dimethyloctylammonium) propansultan] and DB-X [1,4-bis(triethylmethylammonium)benzene dibromide] were synthesized and employed for high conversion synthesis of dichlorocyclopropane from various olefins.

Keywords: Phase transfer catalysis, dichlorocyclopropanation, conversion

INTRODUCTION

In recent years, the problems of two-phase reactions have been solved by the development of phase transfer catalysis (PTC) [1-3]. The advantages of the PTC method for synthesizing dichlorocyclopropane are increased reaction rate, increased conversion, low energy requirements; a commercially available and inexpensive catalyst, inexpensive, non-toxic and recoverable solvents, and inexpensive bases for anion generation. Searching for a more effective catalyst or multi-site catalysts to enhance the reaction or to elevate the conversion plays an important role in phase transfer catalysis [4-6]. Previously, sulfobetaine monomers were considered as functional monomers and were applied as minor components for copolymers in various fields, such as synthetic textile fibers.

*To whom all correspondence should be sent.
hydrophilic and charged dispersing agents, as well as protective colloids. In this work, S-8 [4-(dimethyloctylammonium) propansultan] and DB-X [1,4-bis(triethylmethylammonium)benzene dibromide] are employed for the first time as phase transfer catalysts to synthesize dichlorocyclopropane via dichlorocyclopropanation in an alkaline solution/organic solvent two-phase medium. The synthesis of S-8 and DB-X as new phase transfer catalysts is described in the following scheme.

\[
\begin{align*}
\text{H}_{2}C&\quad \text{O} \quad \text{O} \quad \text{H}_{2}C \\
&\quad \text{H}_{2}C&\quad \text{O} \quad \text{O} \quad \text{H}_{2}C \\
&\quad \text{H}_{2}C&\quad \text{O} \quad \text{O} \quad \text{H}_{2}C
\end{align*}
\]

\[
\text{C}_{2}H_{17}(\text{CH}_{3})_{3}\text{N} \quad \rightarrow \quad \text{C}_{2}H_{17}^{+} \quad \text{C}_{2}H_{5}\text{SO}_{3}^{-}
\]

S-8

\[
\begin{align*}
\text{BrH}_{2}C&\quad \text{Br} \quad \text{H}_{2}Br \quad 2\text{C}_{2}H_{5}\text{N} \\
&\quad \text{BrH}_{2}C&\quad \text{Br} \quad \text{H}_{2}Br
\end{align*}
\]

\[
\text{C}_{2}H_{5} \quad \text{C}_{2}H_{5} \quad \text{C}_{2}H_{5} \quad \text{C}_{2}H_{5}
\]

DB-X

Dichlorocyclopropane has been difficult to synthesize using conventional methods [7,8] until the technique of phase transfer catalysis was developed [9-13]. This work investigates the addition of dichlorocarbene to different olefins, including mono- and di-olefins, and the application of these two new phase transfer catalysts. The results of dichlorocyclopropanation are shown in Table 1. In the absence of a phase transfer catalyst, less than 1% conversion was detected even after 3 h of reaction. In contrast, high yields of products were obtained in 30 min after using 5 mol% (based on the substrate amount) of the new catalyst. Thus, the results reveal the remarkable efficiency of S-8 [4-(dimethyl-octylammonium) propansultan] and DB-X [1,4-Bis(triethylmethylammonium)benzene dibromide] as potential phase transfer catalysts.

EXPERIMENTAL

General

1H NMR (400 MHz) was recorded on a BRUKER-AM-400 NMR spectrometer with TMS as an internal standard. The infrared spectra were measured on a Shimadzu FTIR-8700 spectrometer. Gas chromatography was carried out using Shimadzu GC-17 A instrument.