First Example of Trifluoromethylation in the Ecdysteroid Series. Synthesis of (20RS)-20-O-Hydro-20-trifluoromethylpoststerone

V. N. Odinokov, S. R. Nazmeeva, and R. G. Savchenko

Institute of Petroleum Chemistry and Catalysis, Academy of Sciences of Bashkortostan and Ufa Research Center, Russian Academy of Sciences, pr. Oktyabrya 141, Ufa, 450075 Bashkortostan, Russia

Received April 12, 2003

Abstract—The title compound was synthesized by trifluoromethylation of poststerone derivatives with trimethyl(trifluoromethyl)silane in the presence of tetrabutylammonium fluoride.

Replacement of a methyl group by trifluoromethyl, which has a comparable size but is strongly electron-acceptor and lipophilic, endows an organic molecule with new physical, chemical, and biological properties [1, 2]. Many procedures for introduction of trifluoromethyl group into organic compounds are known [3], but the most promising is the use of trimethyl(trifluoromethyl)silane as nucleophilic trifluoromethylating agent [2, 4]. This reagent is applicable to various organic compounds, including keto steroids [4]; however, no examples of trifluoromethylation in the series of ecdysteroids have so far been reported.

We previously found [5, 6] that polyhydroxysterols do not undergo trifluoromethylation if at least one hydroxy group is not protected [6]. In this case, trifluoromethylation of the hydroxy rather than keto group occurs [5, 6]. We have succeeded in effecting trifluoromethylation of 14α-O-trimethylsilylpoststerone diacetate V and acetonide VI. Compounds V and VI were synthesized by oxidative cleavage at the C20–C22 bond [7] of 20-hydroxyecdysone (I) isolated from Serratula coronata [8]. The resulting poststerone II was converted into diacetate III and acetonide IV which were treated with Me3SiCF3 [5] to obtain ketones V and VI. Subsequent reactions of the latter with Me3SiCF3 in the presence of tetrabutylammonium fluoride gave the corresponding products of nucleophilic addition of CF3 group at the C20=O carbonyl group, (20RS)-14α,20-di-O-trimethylsilyl-20-(trifluoromethyl)poststerone diacetate VII and acetonide VIII. Here, the C8=O group remains intact, as follows from the IR, UV, and 1H and 13C NMR spectra. The fact that the addition of Me3SiCF3 occurred just at the C20=O group in V and VI is confirmed by the following data. The 13C NMR spectra of the products lack signal at about δC 209 ppm, but two quartets appear at δC 78 ppm* (J = 26 Hz) and δ 126 ppm (J = 288 Hz), which belong to the CCF3 fragment. In the 1H NMR spectra of compounds VII and VIII we observed two singlets (1:1) in the δ range from 1.2 to 1.7 ppm with an overall intensity corresponding to three protons (C21H3) instead of the singlet at δ 2.0 ppm from the acetyl group in the spectra of initial ketones V and VI), indicating that a new chiral (RS) center appeared at C20.

Hydrolysis of diacetate VII with sodium hydroxide in aqueous methanol and of acetonide VIII with 70% acetic acid afforded diol IX which was treated with 5% hydrochloric acid in tetrahydrofuran in the presence of tetrabutylammonium fluoride to obtain the target trifluoromethyl-substituted poststerone analog, compound X (Scheme 1).

EXPERIMENTAL

The IR spectra were recorded on a Specord 75IR spectrometer in mineral oil. The UV spectra were measured on a Specord M-40 spectrophotometer from solutions in methanol and chloroform. The 1H and 13C NMR spectra. The fact that the addition of Me3SiCF3 occurred just at the C20=O group in V and VI is confirmed by the following data. The 13C NMR spectra of the products lack signal at about δC 209 ppm, but two quartets appear at δC 78 ppm* (J = 26 Hz) and δ 126 ppm (J = 288 Hz), which belong to the CCF3 fragment. In the 1H NMR spectra of compounds VII and VIII we observed two singlets (1:1) in the δ range from 1.2 to 1.7 ppm with an overall intensity corresponding to three protons (C21H3) instead of the singlet at δ 2.0 ppm from the acetyl group in the spectra of initial ketones V and VI), indicating that a new chiral (RS) center appeared at C20.

Hydrolysis of diacetate VII with sodium hydroxide in aqueous methanol and of acetonide VIII with 70% acetic acid afforded diol IX which was treated with 5% hydrochloric acid in tetrahydrofuran in the presence of tetrabutylammonium fluoride to obtain the target trifluoromethyl-substituted poststerone analog, compound X (Scheme 1).

EXPERIMENTAL

The IR spectra were recorded on a Specord 75IR spectrometer in mineral oil. The UV spectra were measured on a Specord M-40 spectrophotometer from solutions in methanol and chloroform. The 1H and 13C NMR spectra. The fact that the addition of Me3SiCF3 occurred just at the C20=O group in V and VI is confirmed by the following data. The 13C NMR spectra of the products lack signal at about δC 209 ppm, but two quartets appear at δC 78 ppm* (J = 26 Hz) and δ 126 ppm (J = 288 Hz), which belong to the CCF3 fragment. In the 1H NMR spectra of compounds VII and VIII we observed two singlets (1:1) in the δ range from 1.2 to 1.7 ppm with an overall intensity corresponding to three protons (C21H3) instead of the singlet at δ 2.0 ppm from the acetyl group in the spectra of initial ketones V and VI), indicating that a new chiral (RS) center appeared at C20.
Scheme 1.

\[\text{I} \xrightarrow{\text{CrO}_3, \text{H}_2\text{SO}_4, \text{Me}_2\text{CO}} \text{II} \]

(1) \(\text{Ac}_2\text{O}, \text{pyridine, DMAP} \)
(2) \(\text{Me}_2\text{CO}, \text{H}_2\text{IP(}\text{Mo}_2\text{O}_{10}\text{)}\text{_4}\)

\[\text{III, IV} \xrightarrow{\text{Me}_3\text{SiCF}_3, \text{Bu}_4\text{NF, THF}} \text{V, VI} \]

\[\text{VII, VIII} \xrightarrow{\text{(1) 20\% NaOH/McOH}} \text{IX} \]

\[\text{IX} \xrightarrow{5\% \text{HCl, Bu}_4\text{NF, THF}} \text{X} \]

\[\text{III, V, VII, } R = R' = \text{Ac}; \text{ IV, VI, VIII, } RR' = \text{Me}_2\text{C}; \text{ IX, R = SiMe}_3. \]

\(^{14}C\) NMR spectra were obtained on a Bruker AM-300 instrument at 300.13 and 75 MHz, respectively, using chloroform-\(d\), methanol-\(d_4\), or benzene-\(d_6\) as solvent; the chemical shifts were measured relative to tetramethylsilane as internal reference. The melting points were determined on a Boetius microdevice. The optical rotations were measured with the aid of a Perkin-Elmer 141 polarimeter. TLC analysis was performed on Silufol plates; spots were visualized by treatment with a solution of 4-hydroxy-3-methoxy-benzaldehyde in ethanol, acidified with sulfuric acid.

2,3-Di-O-acetylpostosterone (or 2\(\beta\),3\(\beta\)-diacetoxy-14\(\alpha\)-hydroxy-5\(\beta\)-pregn-7-ene-6,20-dione) (III). Post-sterone (II) was prepared according to the procedure described in [7] from 20-hydroxyecdysone (I) isolated from \textit{Serratula coronata} [8]; mp 233–235\(^\circ\)C (cf. [7]), \([\alpha]_D^{18} = +137.2^\circ\) (c = 1.13, MeOH); the IR and \(^1H\) and \(^{13}C\) NMR spectra of II were identical to those reported in [9]. Compound II, 0.2 g (0.55 mmol), was dissolved in 2 ml of pyridine, 0.34 g (3.31 mmol) of acetic anhydride was added to the solution, and \(~0.1\) mg of 4-dimethylaminopyridine was then added.