Adam lived to the age of 930 (Genesis 5:5). Methuselah was 969 years old before he went to the grave (Genesis 5:27). Antediluvian birthday parties must have kept candle makers in prosperity. Since the Great Flood of Noah, however, we seem limited to roughly what Psalm 90:10 reports, “The span of our life is seventy years or, given strength, eighty years.” Despite increased life expectancy extending this to nearly 100 in recent years, we are quite certain that our life span is still limited. We all will die. The death rate is expected to be 100 percent.

It is almost shocking, then, to entertain the prospect that we might live on for centuries, perhaps indefinitely. Yet, this is what transhumanists and some biogerontologists are beginning to plan for. They contend that death is a disease. And, like other diseases, death has a cure. To search for this cure is the next adventure for science, so they say.1

Now, just what does this imply for our religious sensibilities? Has God fixed our life span? Or, is it malleable? With technological ingenuity, might we be able to alter our biological clock so that it ticks unendingly? Will divine providence encourage this endeavor, or will God put a stop to it? Is the attempt at radical life extension (RLE) just another Promethean delusion, one that will end with nature striking back with an uncontrollable bio-catastrophe?

In what follows, we will look at the claims and dreams of transhumanists who place before us a vision of RLE, of physical immortality. We will ask, what might be the theological implications? What might be the implications...
for spiritual practice? We will place these questions within the interpretive frameworks of Islam, Judaism, Christianity, Hinduism, Buddhism, Jainism, and Daoism. What we will see is that any achievements by RLE scientists will have relatively little impact on these religious worldviews—that is, on theological cosmology or anthropology. Yet, as religious intellectuals speculate about the possible impact of RLE, they register concern about what might happen to our spiritual motivations and our daily life. The prospects of a prolongation of life or the elimination of death, many theologians speculate, will undercut our sense of urgency to make preparations in this life for the reality that will face us beyond death.

Radical Life Extension

“Why must we age and die?” wail the transhumanists. “Why must our brains and bodies be so fragile, doomed to decay—programmed for self-destruction?” In his transhumanist manifesto, Simon Young (2006) dubs “death as a disease waiting to be cured.” That cure will result from finding the biological cause of aging. Science will make this find. In his view, science, not religion, will be the one to save us from death: “When the cure for aging is found, it will not come through faith, prayer, or meditation, but through science—the product of the technowonderland of the modern world.”

How soon might science begin to win the war against aging? In the next decade? This is what Ramez Naam (2005) estimates, “If the pace of discovery continues, we may see therapies to increase the human life span enter human trials within the next decade” (Naam 2005, 95). Computer whiz Ray Kurzweil declares that we are already ready. By reprogramming our biochemistry, “we have the means right now to live long enough to live forever” (Kurzweil 2005, 371).

Working within such a progressive vision, former Cambridge geneticist and biogerontologist Aubrey de Grey plans to return us to the pre-Noah days when the age of 70 or 80 would be only a fraction of the average life span. To make progress in the direction of RLE, science must triumph over what has hitherto been nature’s province, namely, aging and natural death. “Seven deadly things” stand as hurdles in our way, says de Grey (2007), but science can knock them down and we can race past them. Thus, (1) cell loss can be overcome with reversible stem cell therapy, (2) cell death–resistance can be overcome by immunotherapy and suicide gene therapy, (3) chromosomal mutations and epimutations can be obviated by gene therapy, (4) mitochondrial mutations can similarly be obviated by gene therapy and by splicing the mitochondrial genome into the chromosomes, (5) indigestible molecules inside cells can be obviated with microbial enzymes,