Leadership and Emotional Management in Science-Based Innovation Work

Introduction

One of the most intriguing aspects of the predominant scientific ideology is the emphasis on emotional detachment from the object of study and from the results and findings produced. While other work is either explicitly based on the ability to perform what has been called emotional work (Hochschild, 1983), for instance various groups of service workers and professionals such as medical doctors or lawyers, or is regarded a human resource to be nourished and emphasized under the label of motivation, scientific work is in many respects portrayed as a social practice wherein too much emotionality is not of necessity a good thing for neither the process, nor the outcome. The tradition of modest witnessing, the ability to provide tempered and analytical accounts of what is observed, is clearly taking an argument against a too emotional relationship with the object of study. Underlying this disregard for emotionality is the long-standing Western tradition wherein ratio, human reason, is contrasted against the more fluid and ambiguous human affects. In the Cartesian tradition of thinking, mind and body remain separated and the emotional capacities are located in the body as opposed to the cognitive capacities of the mind. Over the years, the Cartesian doctrine has been subject to criticism from a number of theoretical camps including philosophers, feminist theorists, and physicians, pointing at the reductionist features in the Cartesian work (Gatens, 1996). For instance, Lutz (1996) writes:

As both an analytic and an everyday concept in the West, emotion, like the female, has typically been viewed as something natural rather than cultural, irrational rather than rational, chaotic rather
than ordered, subjective rather than universal, physical rather than mental or intellectual, unintended and uncontrollable, and hence often dangerous. This network of associations sets emotion in disad-

vantage contrast to more valued personal processes, particularly to cognition and rational thought, and the female in deficient relation to her male other. (Lutz, 1996: 151)

While emotionality is a potential danger in scientific work, that is, a human faculty too “impure” and ambiguous (see Douglas, 1966, on the associations between impurity and danger) to fully qualify as a legitimate resource in scientific work, it is also somewhat paradoxically commonplace to think of scientists and researchers as being dedicated and committed to their work. Few professions are so closely associated with a life-long engagement in a particular and narrow field of interest as scientists. Therefore, the scientific ideology demonstrates a Janus-faced view of emotionality; on the one hand it is condemned or at least not fully recognized as a useful and legitimate resource in scientific work, while on the other hand it is a form of commitment that serves as the primus motor for scientific progress and the scientific system as such. Emotionality is therefore an “absent-present” concept in scientific work that is simultaneously recognized and excluded. This ambivalent relationship to emotionality is representative of the concern that science cannot become “subjective”; it must always in its every instant remain a collective enterprise. When the practising scientist speaks, he or she lets science speak through his or her mouth (see Heidegger, 1971).

Contrary to the predominant view, perhaps less clearly articulated today than in the heydays of positivist epistemologies, this chapter will critically discuss the impact of emotionality and the insistence on leadership as a mechanism that regulates and controls the emotional qualities of scientific practice. It is important to notice that, in our discussion, leadership is an effect from the emotional work in scientific practice. Scientific work is based on coordination, specialization, expertise and the ability to integrate components into wholes, and, the other way around, break down overarching problems into strings of separate research assignments. Such a coordinated activity demands authority and mechanisms that guide the undertakings on the local level. On the macrolevel, scientific work may be regarded a self-organizing process (Knorr Cetina, 1995) where there is no center of control and coordination but where scientific work and results are channelled into different institutions such as university departments,