As noted earlier, the possibility of alternative hypotheses equally accounting for our sensory experiences is widely viewed as a source of skeptical doubt. In Chapter 5 we discussed one way of utilizing this insight drawing on the principle of closure to set up a (Cartesian) skeptical argument. In this chapter, I shall deal with another way of constructing such arguments that helps itself with, not the principle of closure but, the so-called underdetermination principles (Yalcin 1992; Brueckner 1994). To explain, I begin by distinguishing between knowledge and justification analogs of the principle of underdetermination. While acknowledging the plausibility of a restricted version of the knowledge version, it shall be argued that this has nothing to do with facts involving underdetermination.

My central thesis, however, is that the (fundamental) justification version of the underdetermination principle is implausible. To support this claim, I shall critically evaluate a number of direct and indirect arguments that have been adduced to show that typical underdetermination principles provide a basis for skeptical reasoning. Having shown that none of these arguments holds water, I shall seek to explain away the intuitive appeal of the underdetermination principle by suggesting that its plausibility actually derives from confusing it with a superficially similar but entirely distinct principle which is plausible but which concerns the epistemic status of the comparative, rather than the individual, content of the competing beliefs.

6.1 Skeptical arguments from underdetermination

Typical Cartesian skeptical arguments, as we saw, take their departure from Descartes’s skeptical hypothesis according to which instead of
the world one normally supposes to exist, we can imagine a world consisting only of one person, his beliefs and an evil genius (or a mad scientist) causing him to have just those beliefs that he would have were there to be a world consisting of the familiar objects. The fact that these two situations are phenomenologically indistinguishable, Descartes concludes, undermines much of what we ordinarily claim to know. Such arguments, as noted before, usually exploit the principle of closure according to which knowledge is closed under known entailment.

\[(CK) \text{ For all } S, \phi, \psi, \text{ if } S \text{ knows that } \phi \text{ and } S \text{ knows that } \phi \text{ entails } \psi, \text{ then } S \text{ knows that } \psi.\]

To remind ourselves of the structure of such arguments, let \(P\) be some arbitrary proposition about the external world and SK denote a skeptical hypothesis incompatible with \(P\) such as “I am a brain in a vat with sense experience qualitatively indistinguishable from my actual experience.” The Cartesian argument from closure (C) may then be presented as having the following structure.

\[
\begin{align*}
(1C) \text{ If I know that } P, \text{ then I know that } \neg \text{SK. [from (CK)]} \\
(2C) \text{ I do not know that } \neg \text{SK.} \\
\therefore (3C) \text{ I do not know that } P.
\end{align*}
\]

Anthony Brueckner has, however, noted that the sort of theses that are normally invoked in support of the premise (2C) have the consequence of depriving the skeptic to utilize the principle of closure to support the premise (1C) (Brueckner 1994). Such theses usually involve certain constraints on the concept of knowledge such as the following “tracking” condition (\(T\)) that appears in Nozick’s account of what it is for a subject to know a proposition (\(P\)) (Nozick 1981).

\[
(T) \text{ If } P \text{ were false, then } S \text{ would not believe that } P.
\]

While (\(T\)) lends support to (2C), it undermines, says Brueckner, the principle of closure by allowing a cognizer to know a proposition while failing to know an entailed consequence of that proposition (such as that specified in (1C)).

To rectify the situation, Brueckner, among others, draws attention to the fact that the cognizer’s typical evidence under such circumstances seems to fail to discriminate between the hypotheses \(P\) and \(\neg \text{SK}\).\(^1\) To