Distribution of the isotopes produced in the YBa$_2$Cu$_3$O$_{7-x}$ superconductor and PbZr$_{0.54}$Ti$_{0.46}$O$_3$ ferroelectric by energetic charged particles

V. A. Didik, R. Sh. Malkovich, and E. A. Skoryatina

A. F. Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

V. V. Kozlovskii

St. Petersburg State Technical University, 195251 St. Petersburg, Russia

(Submitted May 26, 1998)

Fiz. Tverd. Tela (St. Petersburg) 40, 2189–2192 (December 1998)

A study has been made of the concentration profiles of radioactive isotopes produced by transmutation in the YBa$_2$Cu$_3$O$_{7-x}$ superconductor and PbZr$_{0.54}$Ti$_{0.46}$O$_3$ ferroelectric by energetic protons (10 and 15 MeV), deuterons (4 MeV), and 3He and 4He nuclei (20 MeV). Profiles of two types have been observed: monotonic and with a maximum. It is shown that the type of isotope concentration profile is determined by the nature of the cross-section energy dependence of the nuclear reaction producing a given isotope. © 1998 American Institute of Physics.

2. RESULTS AND THEIR DISCUSSION

We measured in the YBCO superconductor the profiles of the radioactive isotopes 65Zn, 90Zr, 90Nb, 66Ga, 92mNb, 138Ce, and 141Ce produced by reactions 6Cu (p, n) 65Zn, 89Y (p, n) 90Zr, 63Cu (d, p) 64Cu, 89Y (3He, $2p$) 90Nb, 67Cu (3He, n) 66Ga, 89Y (3He, n) 92mNb, 136Ba (3He, n) 139Ce, and 138Ba (3He, n) 141Ce. As seen from Fig. 1a–1d, the concentration of various isotopes reaches 10^{13}–10^{14} cm$^{-3}$ in irradiation by protons, deuterons, and 4He nuclei, and is slightly in excess of 10^{12} cm$^{-3}$ in the case of 3He nuclei (the quoted concentrations relate to the end of the irradiation). The profile depth varies from 60 to 170 μm. When irradiated by 4He nuclei, the profile depth is the largest for the 66Ga isotope, and the smallest for 138Ce. All profiles fall off monotonically away from the surface, with the exception of the 92mNb isotope profile, which exhibits a fairly flat maximum. Note that irradiation by protons was carried out under oblique incidence (18° beam angle to the surface).

In the PZT ferroelectric, we measured the profiles of the radioactive isotopes 48V, 90Nb, 92mNb, 206Bi, 51Cr, 93mMo, and 99Mo produced by the reactions (Ref. 6) 48Ti (p, n) 48V, 90Zr (p, n) 90Nb, 92Zr (p, n) 92mNb, 208Pb (p, n) 208Bi, 48Ti (3He, n) 51Cr, 90Zr (3He, n) 93mMo, and 96Zr (3He, n) 99Mo. The concentration of various isotopes reaches 4×10^{12}–10^{13} cm$^{-3}$ in irradiation by protons, and 10^{13}–10^{14} cm$^{-3}$ when irradiated by 4He nuclei (Fig. 2a and 2b). The profile depth is 70–150 μm for 4He nuclei, and 420–650 μm for protons. The profiles of the 90Nb, 206Bi, and 93mMo isotopes are monotonic, whereas those of 48V, 92mNb, 51Cr, and 99Mo pass through a maximum. The PZT was irradiated by protons under continuous variation of the beam incidence angle.

As follows from the measurements, the concentration profiles obtained in the above experimental conditions are of two types, namely, monotonic and with a maximum. Profiles with a maximum are observed for the 92mNb, 99Mo, and 51Cr...
isotopes produced by 4He nuclei in the $(^4$He,$n)$ reaction, as well as for 92mNb and 48V obtained by the (p,n) reaction.

To find an interpretation for the isotope profile pattern, consider the expression relating the concentration of the transmutation-produced radioactive isotope $c(x)$ to the parameters of the material and irradiation

$$c(x) = N \Phi \sigma(x) \lambda^{-1} [1 - \exp(-\lambda t)],$$

(1)

FIG. 1. Depth profiles of radioactive transmutation isotopes produced in irradiation of $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$ by (a) protons, (b) deuterons, (c) 3He, and (d) 4He. (a) 1 — 65Zn, 2 — 89Zr; (b) 64Cu; (c) 90Nb; (d) 1 — 66Ga, 2 — 92mNb, 3 — 141Ce, 4 — 139Ce.