Phase Diagram and Physical Properties of the Sodium Niobate–Lithium Niobate–Cadmium Niobate Three-Component System

Research Institute of Physics, Rostov State University, pr. Stachki 194, Rostov-on-Don, 344090 Russia
E-mail: larisa@riphys.rnd.su

Received October 19, 1999; in final form, May 5, 2000

Abstract—The phase diagram of the (Na,Li,Cd$_{0.5}$)NbO$_3$ ternary system is refined. The electrical properties of solid solutions over a broad range of the component concentrations were studied. The compositions promising for high-temperature transducers were obtained. © 2001 MAIK “Nauka/Interperiodica”.

INTRODUCTION

In this paper, we refine information on the phase transitions and physical properties of the (Na,Li,Cd$_{0.5}$)NbO$_3$ system studied in [1]. The refined phase diagram of this ternary system enabled a more detailed interpretation of its properties. Similar to [1], we considered six cross sections with a content of the z component, Cd$_{0.5}$NbO$_3$, from 5 to 20 mol %. In each of the sections, we synthesized compounds corresponding to the y sections with 1–15 mol % of LiNbO$_3$. Synthesis and sintering conditions were presented in [1].

RESULTS AND DISCUSSION

We studied the phase diagram region adjacent to the NaNbO$_3$ vertex (Fig. 1). Thin lines depict the y and z sections, and thick lines represent interfaces between regions of different symmetry (single-, two-, and three-phase).

The phase diagram of the ternary system is consistent with those of the associated binary systems. In (100–z)NaNbO$_3$–zCd$_{0.5}$NbO$_3$ [2], solid solutions (SS) form up to $z = 25$. In the range of $0 < z < 15$, SS have rhombic symmetry. The unit cell parameters are related to the parameters of the perovskite monoclinic cell a, b, and β through the following expressions: $A = 2a \cos \beta / 2$, $B = 4b$, and $C = 2a \sin \beta / 2$ (the M_4 phase). At $z \approx 15$, the multiplicity factor for B changes: $B = 2b$ (the M_2 phase). In the range of $19 < z \leq 25$, SS have tetragonal symmetry (the T phase); we failed to reveal superstructures here because of the very weak reflections from impurity phases in the X-ray diffraction patterns. The M_2 and T phases are separated by the broad region of their coexistence.

In the (100–y)NaNbO$_3$–yLiNbO$_3$ system [3], as y grows, SS of different symmetry arise in the following sequence: rhombic M_4 (0 < y < 3.5) \rightarrow rhombohedral M_2 (4 < y < 10.5) \rightarrow rhombohedral Rh (12 < y < 12.5) \rightarrow rhombic M_2 (12.5 < y < 14). The monophase regions are separated by regions of phase coexistence. With a further increase in y, a broad heterogeneous region is observed where, along with the NaNbO$_3$-based SS, LiNbO$_3$ is present. Accordingly, the area adjacent to the NaNbO$_3$ vertex of the ternary phase diagram is divided into several regions of SS crystallization: broad single-phase M_2, M_4, and T regions; narrow single-phase Rh and M_2 regions; broad two-phase $M_2 + Rh$, $M_2 + T$, and $T + Rh$ regions; narrow two-phase $M_2 + M_4$ and $Rh + M_2$ regions; and a three-phase $M_2 + T + Rh$ region.

We considered the uniform deformation parameter δ [4] and the electrical parameters of the SS in the y and z sections. The electrical parameters of different ferroelectric SS containing morphotropic regions (MRs) are known [5–7] to exhibit extrema that are located in the vicinity of MRs and correlate with the structure parameters, in particular, with δ.

In this system, sections crossing the greatest number of phases and MRs have been studied most extensively. Among the z sections, such is the cross section $z = 5$. It goes through three phases: M_4, M_2, and Rh; and three MRs: the narrow two-phase MR$_1$ ($M_2 + M_4$), broad three-phase MR$_2$ ($M_2 + T + Rh$), and very narrow two-phase MR$_3$ ($Rh + M_2$) (Figs. 2a, 2b).

Figure 2a presents the concentration dependences of δ, the relative permittivities $\varepsilon/\varepsilon_0$ and $\varepsilon_{53}^T/\varepsilon_0$, the electro-
mechanical coupling coefficient K_p, and the piezoelectric parameters d_{31} and g_{31}. Figure 2b shows these dependences for the dielectric loss tangent $\tan \delta$, the mechanical Q factor Q_M, the sound velocity V_{R}, and Young’s modulus Y_{11}. It is evident from Fig. 2a that the permittivities, as well as K_p and d_{31}, exhibit two maxima: the higher maxima approach the center of the three-phase MR$_2$, and the lower ones are located at the right edge of the narrow MR$_1$. The positions of the latter maxima with respect to the MR$_1$ cannot be considered accurate, since the measurement step was rather large, 2 mol %, whereas the MR$_1$ width is about 1 mol %. Note also that all of the above-mentioned parameters have minima within the MR$_2$ phase.

The maxima of the piezoelectric parameter g_{31}, which is known to be proportional to the residual polarization P_r, are shifted to the left of both MRs toward the M_2 and M_4 phases (in the M_4 phase, this maximum is incomplete due to a lack of appropriate samples). Such positions of the g_{31} maxima are typical of ferroelectric systems [5, 6].

The above dependences of the electrical parameters correlate with the run of δ, which has a minimum in both MRs and peaks in the M_2 phase.

It is worth noting that the higher maximum of $\varepsilon_{33}^T/\varepsilon_0$ in Fig. 2a is not beyond the right edge of the broad MR$_3$, which is common [5, 6], but lies within it. The same situation was observed for several cross sections of the (Na,Li,Pb$_{0.5}$)NbO$_3$ system [7]. This fact was attributed [7], in particular, to the coexistence of the M and Rh phases, resulting in a considerable increase in the number N of possible directions of the spontaneous polarization ($N = 8(Rh) + 12(M) = 20$) compared with that in the monophase regions. (In PZT-based systems [5, 6], this number is considerably smaller, $N = 8(Rh) + 6(T) = 14$, and virtually does not affect the position of the $\varepsilon_{33}^T/\varepsilon_0$ maximum.) In the three-phase MR$_2$, N is still greater, $N = 8(Rh) + 12(M) + 6(T) = 26$, which markedly increases the orientation part of the permittivity inside the MR and affects the position of $\varepsilon_{33}^T/\varepsilon_0$ and $\varepsilon_{33}^T/\varepsilon_0$ peaks. This in turn influences the maxima of K_p and d_{31}, which are much less affected by g_{31} (in addition, the g_{31} values are small in this system). The same is also observed in the narrow MR$_1$, where $N = 12(M_2) + 12(M_4) = 24$ and the maximum of $\varepsilon_{33}^T/\varepsilon_0$ has a greater effect on K_p and d_{31} than that of g_{31}.

The concentration dependences of $\tan \delta$, Q_M, V_{R}, and Y_{11} (Fig. 2b) can be explained in terms of SS ferroelectric elasticity, which characterizes the domain stability to external actions [5]. According to [5], with a growth of the ferroelectric elasticity, δ, Q_M, V_{R}, and Y_{11} increase, while $\varepsilon_{33}^T/\varepsilon_0$ and $\tan \delta$ decrease. That is the reason why the maxima and minima of $\varepsilon_{33}^T/\varepsilon_0$ and $\tan \delta$ are close to each other (Fig. 2b), whereas the max-