SHORT COMMUNICATIONS

On Functional-Differential Equations with Discontinuous Right-Hand Side

A. V. Surkov

Institute of System Dynamics and Control Theory, Siberian Branch,
Russian Academy of Sciences, Irkutsk, Russia

Received June 14, 2006

Abstract—We consider unique determination and right uniqueness issues for solutions, satisfying the one-sided Lipschitz condition, of functional-differential equations with discontinuous right-hand side.

DOI: 10.1134/S001226610802016X

1. IMPLICIT FORM OF FUNCTIONAL-DIFFERENTIAL EQUATIONS WITH DISCONTINUOUS RIGHT-HAND SIDE

Let \(R^n \) be the \(n \)-dimensional vector space with the Euclidean norm \(\| \cdot \| \), and let \(C_\tau \) be the space of all continuous functions \(\psi(\cdot) \) defined on the closed interval \([-\tau, 0]\), \(\tau > 0 \), and ranging in \(R^n \) with the ordinary sup-norm \(\| \psi(\cdot) \| = \sup_{-\tau \leq \theta \leq 0} \| \psi(\theta) \| \). Suppose that a function \(f : \mathbb{R}^1 \times C_\tau \to \mathbb{R}^n \) is continuous everywhere except for manifolds of the form

\[
S_j = \{ (t, \psi(\cdot)) : W_j(t, \psi(0), \psi(\cdot)) = 0 \} \subset \mathbb{R}^1 \times C_\tau, \quad j = 1, \ldots, m,
\]

where the \(W_j : \mathbb{R}^n \times C_\tau \to \mathbb{R}^1 \) are invariantly differentiable functionals. Consider the functional-differential equation

\[
\dot{x} = f(t, \psi(\cdot)).
\]

A solution of Eq. (1) is defined as a solution of the functional-differential inclusion

\[
\dot{x} \in F(t, \psi(\cdot)),
\]

where \(F \) is the convex hull of all limit values of the function \(f \) at each point \((t, \psi(\cdot))\).

For an arbitrary function \(\psi(\cdot) \in C_\tau \) and for a number \(\Delta > 0 \), by \(E_\Delta(\psi(\cdot)) \) we denote the set of all continuous extensions of the function \(\psi(\cdot) \) to the interval \([-\tau, \Delta]\).

We introduce the following notions [1, p. 44].

Definition 1. A functional \(V : C_\tau \to \mathbb{R}^1 \) is said to have an *invariant derivative* \(\partial_\psi V \) at a point \(\psi(\cdot) \in C_\tau \) if for each \(\Psi(\cdot) \in E_\Delta(\psi(\cdot)) \) the function \(Y_\psi(\xi) = V(\Psi(\cdot)) \), where \(\xi \in [0, \Delta] \) and \(\Psi_\xi(\theta) = \Psi(\xi + \theta), -\tau \leq \theta \leq 0 \), has a finite right derivative \(\partial Y_\psi / \partial \xi_{\xi=+0} \) at zero invariant with respect to the functions \(\Psi(\cdot) \in E_\Delta(\psi(\cdot)) \); i.e., the value of the right derivative at zero is the same for all \(\Psi(\cdot) \in E_\Delta(\psi(\cdot)) \).

Definition 2. A functional \(W : R^n \times C_\tau \to R \) is said to be *invariantly differentiable* at a point \(p = (x, \psi(\cdot)) \in R^n \times C_\tau \) if there exist finite values of \(\nabla_x W \) and \(\partial_\psi W \) at that point and the relation

\[
W(x + z, \Psi(\cdot)) - W(x, \psi(\cdot)) = \langle \nabla_x W[p], z \rangle + \partial_\psi W[p]\xi + o\left(\sqrt{\|z\|^2 + \xi^2}\right)
\]

holds for any function \(\Psi(\cdot) \in E_\Delta(\psi(\cdot)) \), \(z \in R^n \) and \(\xi \in [0, \Delta] \); moreover, \(o(\cdot) \) depends on the choice of the function \(\Psi(\cdot) \in E_\Delta(\psi(\cdot)) \). (Here \(\nabla_x W \) is the gradient of the functional \(W \) with respect to the variable \(x \), and \(\langle \cdot, \cdot \rangle \) stands for the inner product.)
We set \(S \equiv \bigcup_i S_i \). We represent the complement of the set \(S \) in the form of the union of sets \(\Omega_i \) for each of which the functionals \(W_j \neq 0 \) preserve signs on any cross-section \(\{ \psi(\cdot) : (t, \psi(\cdot)) \in \Omega \} \) of the set \(\Omega \), by the point \(t = \text{const} \). We assume that, for each \(\Omega_i \) and for its arbitrary boundary point \((t, \psi(\cdot)) \in S\), there exists a finite limit \(f(t, \psi(\cdot)) \) of the function \(f(t', \psi'(\cdot)) \) provided that \((t', \psi'(\cdot)) \in \Omega_i \). Note that, at each point \((t, \psi(\cdot))\), there are finitely many limits since the set of domains \(\Omega_i \) is finite. We have \(f(t, \psi(\cdot)) = f(t, \psi(\cdot)) \) at a point of continuity.

A function \(f \) with the above-mentioned properties is said to be \textit{piecewise continuous}.

For any vector \(z \in \mathbb{R}^n \) and number \(h \in [0, \tau) \), we introduce the function

\[
\psi^z(\theta) = \begin{cases}
\psi(h + \theta) & \text{if } -\tau \leq \theta \leq -h \\
\psi(0) + (h + \theta)z & \text{if } -h \leq \theta \leq 0.
\end{cases}
\]

By \(f(t, \psi(\cdot); z) \) we denote the limit of the function \(f(t, \psi^z(\cdot)) \) as \(h \to +0 \) and set \(\Omega = \bigcup_i \Omega_i \). If \((t, \psi(\cdot)) \in \Omega \), then \(f(t, \psi(\cdot); z) = f(t, \psi(\cdot)) \) for any vector \(z \in \mathbb{R}^n \), since, in this case, \((t, \psi(\cdot)) \) is a point of continuity of the function \(f(t, \psi(\cdot)) \). Let \((t, \psi(\cdot)) \in S \). The limit value \(f(t, \psi(\cdot); z) \) is uniquely determined for a piecewise continuous function \(f \) if there exists a \(\delta > 0 \) such that the points \((t, \psi^z(\cdot)) \) belong only to one of the sets \(\Omega_i \) for all \(h \in (0, \delta) \). The latter is valid if, for all \(i \in \mathbb{N} \), \(\{ z : W_i(\psi(0), \psi(z)) = 0 \} \), the functionals \(W_i(\psi^z(0), \psi^z(\cdot)) \) are nonzero and preserve their signs for all \(h \in (0, \delta) \). By using the assumption on the invariant differentiability of the functional \(W_i \), we write out the relation

\[
W_i(\psi(0) + hz, \psi^z(\cdot)) = W_i(\psi(0), \psi(\cdot)) + \langle \nabla W_i[p], z \rangle h + \partial^\circ W_i[p] h + o(h) \sqrt{1 + h^2}
\]

at the point \(p = (\psi(0), \psi(\cdot)) \).

Since \(W_i = 0 \) for \(i \in I(\psi(\cdot)) \), it follows from (3) that

\[
W_i(\psi(0) + hz, \psi^z(\cdot)) / h = \langle \nabla W_i[p], z \rangle + \partial^\circ W_i[p] + o(h) / h,
\]

whence we find that for a sufficiently small \(\delta > 0 \), for all \(h \in (0, \delta) \), and for any \(z \) the sign of \(W_i \) coincides with that of \(p_i(\psi(\cdot), z) \) provided that

\[
p_i(\psi(\cdot), z) \equiv \langle \nabla W_i[p], z \rangle + \partial^\circ W_i[p] \neq 0
\]

for all \(i \in I(\psi(\cdot)) \). Therefore, the value of \(f(t, \psi(\cdot); z) \) is uniquely determined provided that the vector \(z \) satisfies the condition \(p_i(\psi(\cdot), z) \neq 0 \) for all \(i \in I(\psi(\cdot)) \).

Let us consider two cases.

1. Let \(\nabla W_i[p] = 0 \) for some index \(i \in I(\psi(\cdot)) \). Then \(p_i(\psi(\cdot), z) \neq 0 \) only if \(\partial^\circ W_i[p] \neq 0 \). Therefore, it follows from (4) for this index \(i \) that \(W_i = 0 \) and this functional has the sign of \(\partial^\circ W_i[p] \) for sufficiently small \(\delta > 0 \) and for all \(h \in (0, \delta) \) and \(z \in \mathbb{R}^n \).

2. If \(\nabla W_i[p] \neq 0 \), then the equations \(p_i(\psi(\cdot), z) = 0 \) with a fixed \(\psi(\cdot) \) define hyperplane \(K_i(\psi(\cdot)), \) which is parallel to the subspace \(\{ z \in \mathbb{R}^n : \langle \nabla W_i[p], z \rangle = 0 \} \) tangent to the surface \(S_i = \{ x : W_i(x, \psi(\cdot)) = 0 \} \), at the point \(x = \psi(0) \) [for a fixed function \(\psi(\cdot) \)].

We introduce the set of indices \(J_i(\psi(\cdot)) = \{ j \in I(\psi(\cdot)) : \langle \nabla W_i[p], z \rangle = 0 \} \). By taking into account all preceding considerations, we find that it is sufficient for the validity of condition (5) that \(z \) does not belong to \(K_i(\psi(\cdot)) \) for any \(i \in J(\psi(\cdot)) \).

Note some obvious properties of the mapping \(z \to f(t, \psi(\cdot); z) \) for arbitrary fixed \((t, \psi(\cdot))\).

1. The mapping \(z \to f(t, \psi(\cdot); z) \) is defined at all points \(z \) lying outside the set

\[
K(\psi(\cdot)) = \bigcup_i K_i(\psi(\cdot)) = \bigcup_i K_i(\psi(\cdot)) : i \in J(\psi(\cdot)) \}
\]

2. The hyperplanes \(K_i(\psi(\cdot)) \) divide the space \(\mathbb{R}^n \) into open parts \(G^i \) on each of which the function \(z \to f(t, \psi(\cdot); z) \) is constant.