Ordinary Differential Equations

Relaxation Self-Oscillations in Neuron Systems: III

Yaroslavl State University, Yaroslavl, Russia
Moscow State University, Moscow, Russia

Received November 9, 2010

Abstract—The mathematical model considered here of a neuron system is a chain of an arbitrary number \(m \geq 2 \) of diffusion-coupled singularly perturbed nonlinear delay differential equations with Neumann-type conditions at the endpoints. We study the existence, asymptotic behavior, and stability of relaxation periodic solutions of this system.

DOI: 10.1134/S0012266112020012

1. DESCRIPTION OF THE OBJECT OF STUDY

The mathematical model to be studied below has the form [1]

\[
\dot{u}_j = d(u_{j+1} - 2u_j + u_{j-1}) + \lambda[-1 + \alpha f(u_j(t-1)) - \beta g(u_j)]u_j, \quad j = 1, \ldots, m, \tag{1}
\]

where \(m \geq 2 \), \(u_{m+1} = u_m \), and \(u_0 = u_1 \). Here the \(u_j = u_j(t) > 0 \) are the neuron membrane potentials, \(\lambda > 0 \) is a large parameter, and \(\alpha, \beta > 0 \) are parameters of the order of unity satisfying the inequality

\[
\alpha > 1 + \beta. \tag{2}
\]

Following [2], we assume that the functions \(f(u) \) and \(g(u) \) belong to the class \(C^2(\mathbb{R}_+) \), \(\mathbb{R}_+ = \{u \in \mathbb{R} : u \geq 0\} \), and have the properties

\[
\begin{align*}
f(0) &= g(0) = 1, \quad 0 < \beta g(u) + 1 < \alpha \quad \forall u \in \mathbb{R}_+; \\
f(u), g(u), uf'(u), ug'(u), u^2f''(u), u^2g''(u) &= O(1/u) \quad \text{as} \quad u \to +\infty. \tag{3}
\end{align*}
\]

Under these conditions, system (1) admits the so-called homogeneous, or synchronous, cycle

\[
u_1 \equiv u_2 \equiv \cdots \equiv u_m = u_*(t, \lambda), \tag{4}
\]

where \(u_*(t, \lambda) \) is the stable periodic solution of the equation

\[
\dot{u} = \lambda[-1 + \alpha f(u(t-1)) - \beta g(u)]u \tag{5}
\]

with period

\[
T_*(\lambda) : \lim_{\lambda \to \infty} T_*(\lambda) = T_0, \quad T_0 = \alpha + 1 + (\beta + 1)/(\alpha - \beta - 1). \tag{6}
\]

Recall that the existence and uniqueness of the desired cycle of Eq. (5) were already established by the authors in [3].

In the following, we show that, first, the homogeneous cycle (4) of system (1) is exponentially orbitally stable for each \(d > 0 \) and for all \(\lambda \gg 1 \); second, in addition to the stable homogeneous cycle, this system has at least \(m \) exponentially orbitally stable inhomogeneous periodic motions for an appropriate choice of the parameters \(\alpha \) and \(\beta \) and appropriate reduction of the diffusion constant \(d \). By analogy with the spatially continuous case, these motions will be referred to as autowave modes.
2. BASIC THEOREM

Just as in the case \(m = 2 \), considered in [2], we carry out the subsequent analysis of system (1) in the new variables \(x, y_1, \ldots, y_{m-1} \), where

\[
u_1 = \exp\left(\frac{x}{\varepsilon}\right), \quad u_j = \exp\left(\frac{x}{\varepsilon} + \sum_{k=1}^{j-1} y_k\right), \quad j = 2, \ldots, m, \quad \varepsilon = \frac{1}{\lambda} \ll 1. \tag{7}\]

By substituting the expressions (7) into system (1), we arrive at the relaxation system

\[
\begin{align*}
\dot{x} &= \varepsilon d(\exp y_1 - 1) + F(x, x(t-1), \varepsilon), \\
\dot{y}_j &= d[\exp y_{j+1} + \exp(-y_j) - \exp y_j - \exp(-y_{j-1})] \\
&\quad + G_j(x, x(t-1), y_1, \ldots, y_j, y_1(t-1), \ldots, y_j(t-1), \varepsilon), \quad j = 1, \ldots, m-1,
\end{align*}
\tag{8}
\]

where \(y_0 = y_m = 0 \) and the functions \(F \) and \(G_j \) have the form

\[
\begin{align*}
F(x, u, \varepsilon) &= -1 + \alpha f\left(\exp\left(\frac{u}{\varepsilon}\right)\right) - \beta g\left(\exp\left(\frac{x}{\varepsilon}\right)\right), \\
G_j(x, u, y_1, v_1, \ldots, v_j, \varepsilon) &= \frac{\alpha}{\varepsilon}\left[f\left(\exp\left(\frac{u}{\varepsilon} + \sum_{k=1}^{j} v_k\right)\right) - f\left(\exp\left(\frac{u}{\varepsilon} + \sum_{k=1}^{j-1} v_k\right)\right)\right] \\
&\quad + \frac{\beta}{\varepsilon}\left[g\left(\exp\left(\frac{x}{\varepsilon} + \sum_{k=1}^{j-1} y_k\right)\right) - g\left(\exp\left(\frac{x}{\varepsilon} + \sum_{k=1}^{j} y_k\right)\right)\right], \quad j = 1, \ldots, m-1.
\end{align*}
\]

Take a constant \(\sigma_0 \) satisfying the conditions \(0 < \sigma_0 < \min((\beta+1)/(\alpha-\beta-1), 1) \). On the interval \(-\sigma_0 \leq t \leq T_0 - \sigma_0 \), where \(T_0 \) is defined in (6), by \(y^m(t, z), \ldots, y^{m-1}_m(t, z), z = (z_1, \ldots, z_{m-1}) \in \mathbb{R}^{m-1} \), we denote the components of the solution of the impulse system

\[
\begin{align*}
\dot{y}_j &= d[\exp y_{j+1} + \exp(-y_j) - \exp y_j - \exp(-y_{j-1})], \\
y_j(+0) &= \frac{\alpha - 1}{\alpha - \beta - 1} y_j(-0), \quad y_j(1+0) = y_j(1-0) - \frac{\alpha}{\alpha - 1} y_j(+0), \\
y_j(0+) = (1 + \beta)y_j(0-), \quad y_j(0+0) = y_j(0+0) - \frac{\alpha}{1 + \beta} y_j(0+), \quad j = 1, \ldots, m-1, \\
y_0 = y_m = 0
\end{align*}
\tag{9}
\]

supplemented with the initial condition

\[
(y_1, \ldots, y_{m-1})|_{t=-\sigma_0} = (z_1, \ldots, z_{m-1}).
\tag{10}
\]

Next, consider the mapping

\[
z \rightarrow \Phi(z) \overset{\text{def}}{=} (y^0_1(t, z), \ldots, y^0_{m-1}(t, z))|_{t=T_0-\sigma_0}
\tag{11}
\]

of \(\mathbb{R}^{m-1} \) into \(\mathbb{R}^{m-1} \). The following assertion holds.

Theorem 1. To each fixed point \(z = z_* \), stable or dichotomous, of the mapping (11), there corresponds a relaxation cycle \((x(t, \varepsilon), y_1(t, \varepsilon), \ldots, y_{m-1}(t, \varepsilon)) \), \(x(-\sigma_0, \varepsilon) \equiv -\sigma_0(\alpha-\beta-1) \), of period \(T(\varepsilon) \) of system (8) with the same stability properties for all sufficiently small \(\varepsilon > 0 \). In addition, one has the limit relations

\[
\begin{align*}
\lim_{\varepsilon \to 0} T(\varepsilon) &= T_0, \\
\lim_{\varepsilon \to 0} \max_{-\sigma_0 \leq t \leq T(\varepsilon) - \sigma_0} |x(t, \varepsilon) - x_0(t)| &= 0, \\
\lim_{\varepsilon \to 0} \max_{t \in \Sigma(\varepsilon)} |y_j(t, \varepsilon) - y^0_j(t, z_*)| &= 0, \quad j = 1, \ldots, m-1,
\end{align*}
\]