Magnetoresistance of the $\text{La}_{0.7}\text{Ca}_{0.3}\text{MnO}_3$ Single Crystal

N. G. Bebenina, R. I. Zainullinaa, N. S. Bannikovaa, L. V. Elokhinaa, V. V. Ustinova, and Ya. M. Mukovskiib

aInstitute of Metal Physics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 18, Ekaterinburg, 620041 Russia

bMoscow Institute of Steel and Alloys (Technical University), Leninskii pr. 4, Moscow, 117936 Russia

Received November 5, 2008

Abstract—The dependence of the resistance ρ of the $\text{La}_{0.7}\text{Ca}_{0.3}\text{MnO}_3$ single crystal on the temperature (in a range of $77 < T < 410$ K) and magnetic field H is studied. The dependence of the magnetoresistance $\Delta\rho/\rho$ of the ferromagnetic phase on the field is shown to be determined by the competition of two mechanisms. In low magnetic fields, the magnetoresistance is positive $\Delta\rho/\rho > 0$ and is determined by changes in the resistance with changing magnetization orientation with respect to the crystallographic axes; in high magnetic fields, the magnetoresistance is negative $\Delta\rho/\rho < 0$, since it is the suppression of spin fluctuations in the magnetic field that plays the principal role. The phase transition from the ferromagnetic to paramagnetic state is a first-order transition close to the second-order one. In the transition range, the magnetoresistance is determined by the resistivity in the zero field $\rho(T)$ and by the shift of the transition temperature $T_C(H)$ in the magnetic field. In the paramagnetic state, the resistivity $\rho(T)$ has an activation character; similarly to the magnetoresistance of other lanthanum manganites, the magnetoresistance of this single crystal is controlled by a change in the activation energy in the magnetic field.

PACS numbers: 75.47.Lx, 75.47.Gk

DOI: 10.1134/S0031918X09090038
MAGNETORESISTANCE THE La$_{0.7}$Ca$_{0.3}$MnO$_3$ SINGLE CRYSTAL

Fig. 1. Temperature dependences of the magnetization M and inverse magnetic susceptibility $\chi^{-1} = H/M$ of the La$_{0.7}$Ca$_{0.3}$MnO$_3$ single crystal measured in a field $H = 10$ kOe.

Substantially, namely, below 220 K, between 220 and 250 K, and above 250 K, which correspond to the ferromagnetic metallic phase, magnetic phase transition (with an the extremum $dM(H = 10$ kOe$/dT$ at 235 K), and paramagnetic semiconducting phase, respectively.

Within the region of ferromagnetic ordering (see Fig. 3), in fields below 7 kOe there are dominant processes of domain wall displacement and magnetization rotation; at $H > 10$ kOe, the true magnetization is dominant. The susceptibility χ of the paraprocess is low (10^{-4} to 10^{-3}) and, therefore, can be determined only with a significant error (about 30% on average). The inset in Fig. 3 shows the $\chi(T)$ dependence. As the temperature increases, the susceptibility decreases and reaches a minimum at $T = 180$ K; then, it increases abruptly. The increase in χ with decreasing temperature at $T < 180$ K indicates the presence of nonferromagnetic inclusions in the ferromagnetic matrix. This conclusion agrees with the data of [11], where the authors revealed nonmetallic inclusions in the metallic matrix of La$_{0.7}$Ca$_{0.3}$MnO$_3$ at temperatures substantially below T_C.

The resistance of the single crystal under study at $T < 150$ K is described adequately by an expression $\rho(T) = \rho(0) + AT^2$, where $\rho(0) = 0.13$ mΩ cm and $A = 2.3 \times 10^{-3}$ mΩ cm/K2 (see the inset (a) in Fig. 2), which is close to the data of [8, 12]. In a temperature range of

Fig. 2. Temperature dependence of the resistivity of the La$_{0.7}$Ca$_{0.3}$MnO$_3$ single crystal. The solid line corresponds to data calculated by Eq. (3) using $E_o = 78$ meV, $\rho_a = 1.7 \times 10^{-3}$ Ω cm, and $m = 0$. The insets show (a) the dependence of the resistivity on T^2 for the ferromagnetic phase and (b) the temperature dependence of the local activation energy for the paramagnetic phase.

Fig. 3. Magnetization curves for the La$_{0.7}$Ca$_{0.3}$MnO$_3$ single crystal in the ferromagnetic region. The inset shows the temperature dependence of the magnetic susceptibility for the paraprocess.