PROPERMUTABLE CHARACTERIZATIONS OF
FINITE SOLUBLE PST-GROUPS AND PT-GROUPS
© X. Yi

Abstract: Let H and X be subgroups of a group G. We say that a subgroup H is X-propermutable
in G provided that there is a subgroup B of G such that $G = N_{G}(H)B$ and H X-permutes (in the sense
of [1]) with all subgroups of B. In this paper we analyze the influence of X-propermutable subgroups
on the structure of a finite group G. In particular, it is proved that G is a soluble PST-group if and
only if all Hall subgroups and all maximal subgroups of every Hall subgroup of G are X-propermutable
in G, where $X = Z_{\infty}(G)$.

DOI: 10.1134/S003744661502010X

Keywords: finite group, X-propermutable subgroup, PST-group, PT-group, Hall subgroup, supersoluble group

1. Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. The symbol $\pi(n)$
stands for the set of all primes dividing the number n; $\pi(G) = \pi(|G|)$. The symbol G^{π} denotes the
nilpotent residual of G, i.e. the smallest normal subgroup of G with nilpotent quotient.

Let A, B, and X be subgroups of G. Then A is said to permute with B if $AB = BA$ and X-permute
with B [1] if $ABx = BxA$ for at least one $x \in X$.

The subgroup A is said to be permutable (S-permutable) in G if A permutes with all subgroups (with
all Sylow subgroups, respectively) of G. A group G is called a PT-group if permutability is a transitive
relation on G; i.e., every permutable subgroup of a permutable subgroup of G is permutable in G.
A group G is called a PST-group if S-permutability is a transitive relation on G.

As well as T-groups, PT-groups, and PST-groups possess many interesting properties (see [2,
Chapter 2]). The descriptions of PT-groups and PST-groups were firstly obtained by Zacher [3] and
Agrawal [4], for the soluble case; and by Robinson in [5], for the general case. Nevertheless, in the further
publications, the authors (see [2] or the recent papers [6–16]) have found out many other descriptions of
soluble PT-groups and PST-groups.

In this paper we give some new characterizations of soluble PST-groups and PT-groups on the basis
of the following

Definition 1.1. Let H and X be subgroups of G. We say that H is X-propermutable in G provided
that there is a subgroup B of G such that $G = N_{G}(H)B$ and H X-permutes with all subgroups of B.

If $X = 1$ in this definition, then H is said to be propermutable in G. We say also that H is completely
propermutable in G (in this connection, see Question 18.91 in [17]) if H is propermutable in every
subgroup of G including H.

Our main goal here is to prove the following

Theorem A. Let $X = Z_{\infty}(G)$. Then G is a soluble PST-group if and only if all Hall subgroups
of G and all maximal subgroups of every Hall subgroup of G are X-propermutable in G.

The proof of Theorem A consists of many steps and the following three useful results cover the main
stages of it.

Original article submitted June 6, 2014.
Proposition 1.2. Let $X = F(G)$ be the Fitting subgroup of G and let H be a Hall X-permutable subgroup of G. If $p > q$ for all primes p and q such that p divides $|H|$ and q divides $|G : H|$, then H is normal in G.

The subgroup A of G is said to be X-semipermutable in G [18] if G has a subgroup B such that $G = AB$ and A permutes with all subgroups of B.

Example 1.3. Let p and q be primes such that q divides $p - 1$. Let $G = A \times B$, where A is a nonabelian group of order pq and B is a group of order p. Let H be a subgroup of order q in G. Then, clearly, H is completely propermutable in G and H is not G-semipermutable in G.

The following corollary of Proposition 1.2 is equivalent to Theorem 5.4 in [18].

Corollary 1.4. Let $X = F(G)$ and let H be a Hall subgroup of G. Suppose that H is X-semipermutable in G and $p > q$ for all primes p and q such that p divides $|H|$ and q divides $|G : H|$. Then H is normal in G.

Corollary 1.5 (see [19, Theorem 3]). If a Sylow p-subgroup P of G, where p is the largest prime dividing $|G|$, is 1-semipermutable in G, then P is normal in G.

Proposition 1.6. Let $X = F(G)$ be the Fitting subgroup of G. If every Sylow subgroup of G is X-permutable in G, then G is supersoluble.

Corollary 1.7 (see [19, Theorem 5]). If every Sylow subgroup of G is 1-semipermutable in G, then G is supersoluble.

Proposition 1.8. Let G be a supersoluble group, $X = F(G)$, and $\pi = \pi(G^{\mathfrak{p}})$. Suppose that every subgroup of G, which is either a subnormal π-subgroup of G or, for some $p \in \pi$, a maximal subgroup of some Sylow p-subgroup of G, is X-permutable in G. Then $G^{\mathfrak{p}}$ is a Hall subgroup of G.

On the basis of Theorem A and Proposition 1.8 we also prove the following

Theorem B. A soluble group G of odd order is a PT-group if and only if all Hall subgroups and all subnormal subgroups of G are completely propermutable in G.

2. The Basic Lemmas

The next lemma is evident.

Lemma 2.1. Let A, B, and X be subgroups of G and let N be a normal subgroup of G.
1. If A permutes with B, then AN/N permutes with BN/N in G/N.
2. If $N \leq A$ and A/N permutes with BN/N in G/N, then A permutes with B in G.

Lemma 2.2. Let H and X be subgroups of G and let N be a normal subgroup of G.
1. If H is X-permutable in G, then HN/N is (XN/N)-permutable in G/N.
2. If H is propermutable in G, then H permutes with some Sylow p-subgroup of G for every prime p dividing $|G|$.
3. If $N \leq H$ and H/N is (XN/N)-permutable in G/N, then H is X-permutable in G.
4. If H is propermutable in G, then NH is propermutable in G.
5. If H is completely propermutable in G, then HN/N is completely propermutable in G/N.

Proof. (1) By hypothesis, there is a subgroup B of G such that $G = N_G(H)B$ and H permutes with all subgroups of B. It is clear that

Let K/N be a subgroup of BN/N. Then $K = (K \cap B)N$, and so HN/N permutes with K/N in G/N by Lemma 2.1. Therefore HN/N is (XN/N)-propermutable in G/N.

305