Development of a Tandem Generator System 229Th/225Ac/213Bi for Repeated Production of Short-Lived α- Emitting Radionuclides

L. I. Guseva and N. N. Dogadkin

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, Russia

Received April 2, 2008

Abstract—226Th was isolated from a long-stored 233U sample using an anion exchanger and 8 M HCl. Thorium was separated from macroamounts of inactive impurities on an anion exchanger in aqueous-methanol HNO$_3$ solutions. A tandem generator system was developed for repeated isolation of 225Ac (α, 10 days) from the parent radionuclide 229Th (7.3 \times 103 years) sorbed on an anion-exchange column, with the subsequent sorption of Ac on a cation-exchange column and repeated elution of 213Bi (α, 45.6 min) with dilute HCl and HBr solutions. The γ-ray spectra of the radionuclides at various steps of their isolation are presented. Alternative procedures for production and isolation of 225Ac and 213Bi are described. The application potential and advantages of the newly developed tandem generator system are discussed.

PACS numbers: 87.58.Ji
DOI: 10.1134/S1066362209020131

Much attention is given today to the development of procedures for production and isolation of short-lived radionuclides with the aim of their use in scientific research, in nuclear medicine, and as tracers in analysis of various natural objects. α- Emitting radionuclides show much promise in nuclear medicine for diagnostics and targeted radiotherapy of tumor diseases [1–6]. Depending on particular problem, relatively “long-lived” and short-lived α- emitting radionuclides are used, with the half-life ranging from several days (225Ac, 223Ra, 223Es) to several hours (211At, 212Pb/212Bi, 215Fm) and minutes (211Pb/211Bi, 213Bi/213Po).

Thanks to favorable nuclear-physical characteristics, 225Ac ($T_{1/2}$ = 10 days) is one of the most promising α- emitting radionuclides for use in radiotherapy [7, 8]. 225Ac is the member of the radioactive family of neptunium:

227Np (α, 2.14 \times 106 years) \rightarrow 223Pa (β, 27.4 days)

\rightarrow 223U (α, 1.6 \times 105 years) \rightarrow 229Th (α, 7.3 \times 103 years)

\rightarrow 225Ra (β, 14.9 days) \rightarrow 225Ac (α, 10 days)

\rightarrow 221Fr (α, 4.9 min) \rightarrow 217At (α, 0.032 s)

\rightarrow 213Bi (45.6 min)\rightarrow 211Po (4×10^{-5} s)

\rightarrow 211Po (α, 209$^+$Tl (2.2 min)\rightarrow 209Pb (β, 3.25 h)

\rightarrow 206Bi (stable)

The α-decay of 225Ac produces three short-lived α- emitting radionuclides: 221Fr, 217At, 213Bi/213Po; the mean energy of all the α-particles is 6.9 MeV.

Actinium-225 is usually produced on accelerators by irradiation of U, Th, or 226Ra with high-energy protons [9–11]. In the course of irradiation, a large number of other α- and γ- emitters, including longer-lived radionuclides, are formed along with 225Ac in side reactions. Their separation and isolation of 225Ac from the irradiated material require the use of a set of various chemical methods, which makes the procedure expensive and time-consuming.

225Ac can also be produced by a photonuclear reaction 226Ra(γ, n)225Ra (β, 14.8 days) \rightarrow 225Ac on a microtron [12] or linear electron accelerator [13]. An apparent disadvantage of this procedure for producing 225Ac is that the target used is highly radioactive and emanating.

The most convenient and promising procedure for producing 225Ac is the generator procedure of its isolation from the parent radionuclide 229Th formed by decay of 233U, which is produced in nuclear reactors by the reaction 212Th(n, γ) \rightarrow 233Th(β, 23.5 min) \rightarrow 233Pa (β, 27.4 days) \rightarrow 233U. Apparently, an alternative procedure for obtaining 233U can be its isolation from long-stored 237Np.

The 229Th/225Ra/225Ac generator was developed on
RESULTS AND DISCUSSION

Isolation and purification of 229Th. To separate 229Th from 235U, we used a well-known separation procedure on an anion exchanger in concentrated HCl solutions. The nitric acid solution containing 233U was evaporated to wet residue which was then dissolved in 2 ml of 8 M HCl. The hydrochloric acid solution (sorbate) was passed through a column containing 0.5 g of Dowex 1 × 8 anion exchanger, preliminarily washed with 8 M HCl. After passing the sorbate through the column, an additional 18-ml portion of 8 M HCl was passed. More than 99% of Th and its decay products (Ra, Ac, etc.) were washed out with 6 ml of the eluate, whereas U remained on the column (Fig. 1). Uranium

The goal of this study was the development of a generator system for repeated isolation of 225Ac from 229Th sorbed on an anion-exchange column by elution with 8 M HNO$_3$ followed by sorption of 225Ac on a cation-exchange column and repeated elution of 213Bi with dilute solutions of HCl and HBr. 229Th was isolated from long-stored solutions containing 233U and was purified to remove a number of macroimpurities using two anion-exchange columns and 8 M HCl and HNO$_3$/CH$_3$OH solutions, respectively.

EXPERIMENTAL

Chemicals, radionuclides, radiometric measurements. All the chemicals used in the experiments (HCl, HBr, HNO$_3$, CH$_3$OH) were of chemically pure grade. Dowex 50 × 8 cation exchanger and Dowex 1 × 8 anion exchanger of particle size 100–200 and 200–400 mesh (Serva) were thoroughly washed with water to remove the fine fraction and were dried in air. The radionuclides 229Th, 225Ra, 225Ac, and 213Bi were isolated from long-stored nitric acid solutions containing 233U, following the procedures described below. When choosing optimum conditions for repeated isolation of 213Bi, we also used short-lived isotopes 211Pb and 211,212Bi, which were repeatedly isolated from 227Ac–211Pb/211Bi and 225Ra–212Pb/212Bi generators developed previously [17–21].

Radiometric measurements were performed on a γ-ray installation with a Na(Tl)I crystal and on a UMF-2000 α-ray counter. The radionuclides were identified by the main γ-quantum energies using a Ge(Li) detector connected to an NUC-810 multichannel analyzer (Merion-X Ltd., Hungary).