Effect of Extranuclear Factors on the Probability of the 121m_2Te \rightarrow^{121m_1}Te Radioactive Decay

G. A. Skorobogatov*, S. I. Bondarevskii, and V. V. Eremin

Chemical Faculty, St. Petersburg State University, Universitetskii pr. 26, St. Petersburg, 198504 Russia

* e-mail: skorgera@mail.ru

Received February 17, 2014

Abstract—The nuclear isomer 121m_2Te was synthesized at a cyclotron by the $(d,2n)$ reaction and then incorporated into the MgO ceramic. This γ-ray source was stored either at 78 or at 298 K. The measured γ-radiation intensity ratio, $R = (\Phi_{573\text{ keV}}/\Phi_{212\text{ keV}})$, at 78 K appeared to be higher by a factor of 1.0012 ± 0.0002 than at 298 K. The temperature dependence of R is caused by the low-temperature increase in the “constant” λ_2 of the 121m_2Te \rightarrow^{121m_1}Te decay by the internal conversion mechanism, equal to $\Delta \lambda/\lambda_2 = (0.07 ± 0.02)\%$. The same increase in the decay constant due to induced γ-ray emission, 121m_2Te $+ \gamma$ (81.79 keV) \rightarrow^{121m_1}Te $+ 2\gamma$ (81.79 keV), will be reached if both the size of the 121m_2Te source and the 121m_1Te concentration in it will be increased by 3 orders of magnitude, i.e., the total 121m_1Te activity should be increased by 6 orders of magnitude.

Keywords: tellurium-121, nuclear isomers, radioactive decay probability

DOI: 10.1134/S1066362214060022

In 1947, Daudel [1] and Segre [2] suggested a method for affecting the constant of electron capture (EC) by a radioactive nucleus via variation of the electron density in the region of the nucleus. This approach was implemented experimentally with 7Be (half-life $\tau = 53$ days), with the largest reached relative change in the decay constant $\Delta \lambda/\lambda = 0.19\%$ [3]. For the strongly converted γ-transition in the isomer 99mTe ($\tau = 6.02$ h), the value of $\Delta \lambda/\lambda = 0.3\%$ was reached [4].

In principle, one more method of affecting the decay constant of γ-radioactive nuclei is possible: generation of induced γ-ray emission (IGE) in the isomer transition $^mX \rightarrow ^nX$:

$$
^mX + h\nu_{21} \rightarrow ^mX + 2h\nu_{21}$$

where

$$
\begin{align*}
\tau_2 & \quad \tau_2 \\
\tau_1 & \quad \tau_1
\end{align*}
$$

where τ_2 is the lifetime of the long-lived upper level mX, decaying into nX with the emission of γ-quantum M4 of energy $E_{21} = h\nu_{21}$ at the conversion coefficient α_2; τ_1 is the lifetime of the short-lived level mX decaying into nX with the emission of γ-quantum M1 of energy $E_{1g} = h\nu_{1g}$ at the conversion coefficient α_1; σ_{IGE} is the effective cross section of IGE (1). For many years, observation of IGE as a new physical effect was believed to be abstractly possible with short-lived nuclear isomers [5] but absolutely impossible with long-lived isomers, even taken in large amounts, because of extremely low IGE cross sections ($\sigma_{IGE} < 10^{-15}$ b). This estimate follows from the Einstein emission theory in the model of independent emitters [6]:

$$
\sigma_{IGE} = (\Lambda_2 \gamma \Gamma_\gamma (4\pi \Gamma_{tot})^{-1} = (\Lambda_2 \gamma \Gamma_\gamma (4\pi \Gamma_{tot})^{-1})f_{\delta}(T)\left[(1 + \alpha_2)\tau_2\right]^{-1}h, \tag{2}
$$

where Λ_2 is the γ-quantum wavelength, Γ_γ is the partial width of the “recoilless” radiation transition, Γ_{tot} is the total width of the spectral line, τ_2 is the lifetime of the nuclear isomer, α_2 is the coefficient of internal conversion of the γ-transition, and $f_{\delta}(T)$ is the fraction of recoilless γ-transitions (Debye–Waller factor) at the matrix temperature T [7]:

$$
\delta_{\delta}(T) = \exp[-E_\delta(\hbar\theta_D)^{-1} (1 + \pi^2\tau_2^2/\theta_D^2)], \tag{3}
$$

where θ_D is the Debye temperature of the crystalline matrix, k is the Boltzmann constant, and E_δ is the recoil energy of the nucleus emitting the γ-quantum.

Contrary to these predictions, direct experiments have shown that the IGE events do occur under definite conditions in M4 transitions of long-lived nuclear
where \(T_{\text{exp}} \) is the temperature of the crystalline matrix; \(x, y, z \) are the linear dimensions of the matrix containing \(m_2X \); \(A_{21} = \left[\tau_2(1 + \alpha_2) \right]^{-1} \) is the Einstein coefficient for the spontaneous decay \(m_2X \rightarrow m_1X \). The IGE yields predicted by formula (5) are compared in Table 1 with the experimentally measured values:

$$
\varepsilon_{\text{exp}}(T_{\text{exp}}) = \frac{\Phi_{\gamma}(T_{\text{exp}}) - \Phi_{\gamma}(300 K)}{\Phi_{\gamma}(300 K)} = \frac{\Phi_{2\gamma}(T_{\text{exp}})}{\Phi_{\gamma}(300 K)} - \Phi_{\gamma}(300 K),
$$

(6)

where \(\Phi_{\gamma}(T) \) is the flux of \(\gamma \)-quanta \(h\nu_{21} \) from the \(m_2X \)-containing matrix with temperature \(T \); \(\Phi_{2\gamma}(T) \) is the flux of coherent pairs \(2h\nu_{21} \) from the same matrix.

It follows from Eq. (5) that IGE (1) by the cooperative mechanism:

$$
\varepsilon_{\text{theor}}(T_{\text{exp}}) = \frac{(4\pi/3)^{[m_2X]}[A_{21}\beta_{\text{die}}/(\tau_1 + \tau_2)]_{\text{min}}(x, \mu_{21}^{-1})}{\text{min}(y, \mu_{21}^{-1})_{\text{min}}(z, \mu_{21}^{-1})},
$$

(5)

Despite negative prediction following from formulas (2) and (3) that, for all the four nuclides \(m_2X \), the cross section \(\sigma_{\text{IGE}} \) does not exceed \(10^{-37} \text{ cm}^2 \), and the linear loss coefficient \((\mu_{21}) \) is no lower than \(10^{-10} \text{ cm}^{-1} \). Therefore, even at the maximum possible concentration \([m_2X] = 10^{22} \text{ cm}^{-3} \), the overall amplification coefficient \((a) \) for IGE in a solid matrix containing \(m_2X \) is always negative:

$$
a = \sigma_{\text{IGE}}[m_2X] - \mu_{21} \leq 10^{-15} \text{ cm}^{-1} - 10^{-10} \text{ cm}^{-1} < 0.
$$

(4)

isomers \(^{125m_2}X \) [8–12], \(^{123m_2}X \) [13, 14], and \(^{119m_2}Sn \) [15]. The numerical parameters of transitions (1) with which the experiments were performed are given in Table 1.

It follows from formulas (2) and (3) that, for all the four nuclides \(m_2X \), the cross section \(\sigma_{\text{IGE}} \) does not exceed \(10^{-37} \text{ cm}^2 \), and the linear loss coefficient \((\mu_{21}) \) is no lower than \(10^{-10} \text{ cm}^{-1} \). Therefore, even at the maximum possible concentration \([m_2X] = 10^{22} \text{ cm}^{-3} \), the overall amplification coefficient \((a) \) for IGE in a solid matrix containing \(m_2X \) is always negative:

$$
a = \sigma_{\text{IGE}}[m_2X] - \mu_{21} \leq 10^{-15} \text{ cm}^{-1} - 10^{-10} \text{ cm}^{-1} < 0.
$$

(4)

Despite negative prediction following from formula (4), induced emission (1) was observed in [8–10] and was reproduced in another laboratory [11, 12]. Thus, there is no doubt in the occurrence of IGE with long-lived nuclear isomers. However, instead of one-particle (with respect to the number of participating \(m_2X \) nuclei) mechanism (1), it is necessary to assume [10] a cooperative mechanism of nuclear superemission, admissible in the running wave model within the framework of nonstationary optics [21]. For IGE, the cooperative model [10, 22, 23] gives the following theoretical value of the relative yield \(\varepsilon \):

$$
\varepsilon_{\text{theor}}(T_{\text{exp}}) = \frac{(4\pi/3)^{[m_2X]}[A_{21}\beta_{\text{die}}/(\tau_1 + \tau_2)]_{\text{min}}(x, \mu_{21}^{-1})}{\text{min}(y, \mu_{21}^{-1})_{\text{min}}(z, \mu_{21}^{-1})} = \frac{(4\pi/3)^{[m_2X]}[A_{21}(T_{\text{exp}})]_{\text{min}}(x, \mu_{21}^{-1})}{\text{min}(y, \mu_{21}^{-1})_{\text{min}}(z, \mu_{21}^{-1})},
$$

(5)

where \(T_{\text{exp}} \) is the temperature of the crystalline matrix; \(x, y, z \) are the linear dimensions of the matrix containing \(m_2X \); \(A_{21} = [\tau_2(1 + \alpha_2)]^{-1} \) is the Einstein coefficient for the spontaneous decay \(m_2X \rightarrow m_1X \). The IGE yields predicted by formula (5) are compared in Table 1 with the experimentally measured values:

$$
\varepsilon_{\text{exp}}(T_{\text{exp}}) = \frac{[\Phi_{\gamma}(T_{\text{exp}}) - \Phi_{\gamma}(300 K)]}{\Phi_{\gamma}(300 K)} = \frac{\Phi_{2\gamma}(T_{\text{exp}})}{\Phi_{\gamma}(300 K)} - \Phi_{\gamma}(300 K),
$$

(6)

where \(\Phi_{\gamma}(T) \) is the flux of \(\gamma \)-quanta \(h\nu_{21} \) from the \(m_2X \)-containing matrix with temperature \(T \); \(\Phi_{2\gamma}(T) \) is the flux of coherent pairs \(2h\nu_{21} \) from the same matrix.