Aminomethylation of 6-Methyl-1-(thietan-3-yl)pyrimidine-2,4(1H,3H)-dione

S. A. Meshcheryakova, V. A. Kataev, and D. A. Munasipova

Bashkir State Medical University, ul. Lenina 3, Ufa, 450000 Bashkortostan, Russia
e-mail: centreles@mail.ru

Received July 25, 2013

Abstract—Mannich reactions of 6-methyl-1-(thietan-3-yl)pyrimidine-2,4(1H,3H)-dione with formaldehyde and morpholine, piperidine, N-methylpiperazine, and diethylamine gave the corresponding 5-aminomethyl-substituted pyrimidine derivatives. The title compound reacted with excess piperazine to form 3,5-bis-(piperazin-1-yl) derivative, while its reaction with an equimolar amount of piperazine afforded 5,5′-(piperazin-1,4-diylbismethylene)bis[6-methyl-1-(thietan-3-yl)pyrimidine-2,4(1H,3H)-dione].

Scheme 1.

Aminomethylation of pyrimidine-2,4(1H,3H)-diones having no substituents on the nitrogen atoms was reported in [1–5]. The direction of this reaction is largely determined by the presence of a substituent on C5 in the pyrimidine ring. 5-Unsubstituted pyrimidine-2,4(1H,3H)-dione undergoes aminomethylation at the C5 atom [1, 2], while with excess reagent both C5 and N3 are involved [2] to give N,C-bis(aminomethyl) derivatives. If the 5-position is occupied, the reaction occurs at the nitrogen atom. According to the data of [3], aminomethylation of thymine and 5-fluorouracil leads to the formation of 1,3-bis(aminomethyl) derivatives, and the Mannich reaction of 5-nitro- and 5-hydroxyuracils involves the nitrogen atom in position 3 [2, 5]. The synthesis of 1-aminomethyl-5-fluorouracils was described in [3, 4]. Aminomethylation of 3-[2-(isobutylsulfanyl)ethyl]-6-methyluracil gave 5-mono- and 1,5-bis(aminomethyl) derivatives [5]. Aminomethylation of 1-substituted pyrimidine-2,4(1H,3H)-diones according to Mannich was not reported.

With a view to explore the reactivity of 6-methyl-1-(thietan-3-yl)pyrimidine-2,4(1H,3H)-dione (I), it was brought into reaction with formaldehyde and secondary amines. The reaction direction depended on the conditions and reactant ratio. By heating compound I with equimolar amounts of formaldehyde and secondary cyclic amines IIa–IIc for 5 h in boiling ethanol at pH 6–7 we obtained the corresponding 5-aminomethylpyrimidine-2,4(1H,3H)-diones IIIa–IIIc in no more than 40% yield, whereas the yield increased to 65% at pH 1–2, the reaction time being the same (Scheme 1). Replacement of ethanol as solvent by acetone (pH 6–7) ensured 65% yield in a shorter time (3 h). Raising the amount of secondary amines to 3–5 equiv and of formaldehyde to 10-equiv improved the yield to 72–77%, and compounds IIIa–IIIc were obtained as the only products. According to the TLC data, the reaction mixtures contained no 3,5-bis(aminomethyl) derivatives.

Compound I failed to react with secondary aliphatic amines (dimethyl- and diethylamine) under analogous conditions. 5-(Diethylaminomethyl)-6-methyl-1-(thietan-3-yl)pyrimidine-2,4(1H,3H)-dione (IIId) was obtained in 57% yield by heating equimolar amounts of the reactants in boiling acetic acid (Scheme 1).

The reaction of pyrimidine I with equimolar amounts of piperazine and formaldehyde in boiling acetonitrile was complete in 1 h with formation of 62% of...
5,5′-(piperazine-1,4-diylbismethylene)bis[6-methyl-1-(thietan-3-yl)pyrimidine-2,4(1H,3H)-dione] (IV) (Scheme 2). When the amount of piperazine was reduced by half, the yield of IV decreased to 50%. In the presence of excess piperazine and formaldehyde we isolated 3,5-bis(piperazin-1-ylmethyl) derivative V.

The 1H NMR spectra of compounds IIIa, IIIb, and IIIId contained a broadened singlet from the N3H proton, a singlet from protons in the methylene group on C5, and signals from the secondary amine residue, which indicated formation of 5-aminomethyl derivatives. In the 13C NMR spectra of IIIa–IIIc we observed signals from the 6-methyl-1-thietanylpyrimidine fragment, 5-CH$_2$ signal, and signals typical of secondary amine residue.

In the 1H NMR spectrum of IV signals from protons in the 6-methyl-1-(thietan-3-yl)pyrimidine fragments and 5-CH$_2$ group had double intensity as compared to the piperazine signal which appeared at δ 2.36 ppm (8H). The 1H NMR spectrum of V was characterized by double intensity of the signals from methylene protons and piperazine residues (δ 2.31–2.42 ppm, 16H). The lack of signals assignable to 5-H (δ 4.60 ppm) and N3H (δ 10.30 ppm) in the pyrimidine ring [6] confirmed the formation of 3,5-bis(piperazin-1-ylmethyl) derivative V.

EXPERIMENTAL

The 1H and 13C NMR spectra were recorded on Bruker AMX-300 (300 MHz for 1H) and Bruker Avence III 500 spectrometers (500 MHz for 1H). The chemical shifts were determined relative to the residual proton and carbon signals of the deuterated solvents. Analytical thin-layer chromatography was performed using Silufix plates which were eluted with butan-1-ol–acetic acid–water (4:1:2); spots were detected under UV light or by treatment with iodine vapor.

6-Methyl-1-(thietan-3-yl)pyrimidine-2,4(1H,3H)-dione (I) was synthesized according to the procedure described in [6].

6-Methyl-5-(piperidin-1-ylmethyl)-1-(thietan-3-yl)pyrimidine-2,4(1H,3H)-dione (IIIa). a. Compound I, 0.79 g (4 mmol), was dissolved in 25 mL of ethanol, 0.4 mL (4.4 mmol) of 33.7% formaldehyde solution, 0.37 g (4.4 mmol) of piperidine, and 0.44 mL of 1 M aqueous HCl were added under stirring, and the mixture was heated for 5 h under reflux. The solvent was distilled off under reduced pressure, and the precipitate was washed with water and dried. Yield 65%.

b. Compound I, 0.6 g (3 mmol), was dispersed in 20 mL of acetone, 2.7 mL (30 mmol) of 33.7% formaldehyde solution and 0.77 g (9 mmol) of piperidine were added, and the mixture was heated for 3 h under reflux. The mixture was cooled, and the precipitate was filtered off, washed with water, and dried. Yield 72%, mp 181–183°C (from benzene–hexane, 1:2).

1H NMR spectrum (500 MHz, CDCl$_3$), δ, ppm: 1.41 m (2H, CH$_2$), 1.51–1.56 m (4H, CH$_2$), 2.31 s (3H, CH$_3$), 2.38 m [4H, N(CH$_2$)$_2$], 3.17–3.21 m (2H, SCH$_2$), 3.21 s (2H, 5-CH$_2$), 4.33–4.37 m (2H, SCH$_2$), 6.23–6.30 m (1H, NCH), 10.33 br.s (1H, 3-H). 13C NMR spectrum (500 MHz, CDCl$_3$), δ, ppm: 17.04 (6-CH$_3$), 24.40 (C4), 26.07 (C3, C5), 32.04 (SCH$_2$), 47.54 (1-CH), 52.76 (5-CH$_2$), 54.53 (C2, C6), 108.15 (C5), 149.73 (C6), 152.87 (C2), 163.57 (C4). Found, %: C 56.42; H 7.91; N 14.23. C$_{14}$H$_{21}$N$_3$O$_2$S. Calculated, %: C 56.54; H 7.80; N 14.13.