D_{s0}DK Vertex in QCD Sum Rules

N. Ghahramany*.*, R. Khosravi**, and S. Janipour***

*Physics Department and Biruni observatory, Shiraz University, Shiraz, 71454 Iran
**Department of Physics, Isfahan University of Technology, Isfahan 84156–83111, Iran
***Department of Physics, College of science, Shiraz University, Shiraz, 71454 Iran

e-mail: *ghahramany@susc.ac.ir; **rezakhosravi@cc.iut.ac.ir; ***s Solmaz Janipour@yahoo.com

Abstract—We calculate the form factors and the coupling constant in the D_{s0}DK vertex in the framework of QCD sum rules. We evaluate the three point correlation functions of the vertex considering both D and K mesons off-shell. The form factors obtained are very different but are the same coupling constant.

DOI: 10.1134/S1547477114020198

1. INTRODUCTION

The meson D_{s0} with the spin—parity (J^P = 0^+) is one of the famous heavy flavor hadrons. Determination of the D_{s0} meson width is limited by experimental resolution to a value of less than 4.6 MeV/c^2. The small width of D_{s0} meson is not surprising as its mass is below the threshold of DK system [1].

There are various applications for the strong form factors and coupling constants associated with vertices involving mesons in QCD. The standard procedure of QCDSR is followed in this work. We calculate the Operator Product Expansion (OPE) and the phenomenological contributions for the correlation function of D_{s0}DK vertex and equate both contributions, following the principle of quark–hadron duality. In order to suppress higher order contributions from the OPE side as well as higher resonances (and continuum) from the phenomenological side, we use the Borel transform in both sides of the equation, obtaining the sum rule. The numerical integration of the sum rule, to estimate the coupling constant is performed. This coupling constant is a function not only of the transferred momentum Q^2 but also of the Borel mass. In general one considers the dependence of decay constants (f_D and f_K) with Borel mass to improve the stability of the coupling constant with respect to the variation of the Borel masses [2]. The outline of this paper is as follows: In Section 2, the general formalism of QCD sum rules is presented for D_{s0}DK vertex. Numerical calculations and discussions are given in Section 3. Finally in Section 4, conclusion is presented.

2. THE SUM RULE FOR THE D_{s0}DK VERTEX

The coupling at the D_{s0}DK vertex can be evaluated by using the three-point function QCDSR. The three-point function associated with the D_{s0}DK vertex, for an off-shell D meson, is given by

\[\Pi^{(D)}_\mu (p, p') = i^2 \int d^4 x d^4 y e^{i(p' - p) y} \langle 0 | T \left(j_\mu^D(x) j^\dagger_D(y) j^{D_0}_\mu(0) \right) | 0 \rangle. \]

And for an off-shell K meson:

\[\Pi^{(K)}_\mu (p, p') = i^2 \int d^4 x d^4 y e^{i(p' - p) y} \langle 0 | T \left(j_\mu^K(x) j^\dagger_K(y) j^{D_0}_\mu(0) \right) | 0 \rangle, \]

where the interpolating currents are \(j^K_\mu = \bar{u} \gamma_\mu s \gamma_5 s, j^D = ic\gamma_5 \bar{u}, \) with \(u, s, c \) are up, strange, charm quark fields respectively. In both cases, each one of these currents has the same quantum numbers as the corresponding mesons.

We can write each \(\Pi_\mu \) in terms of the invariant amplitudes associated with each one of these structures in the following form:

\[\Pi^{(D)}_\mu (p, p') = F_1(p^2, q^2) p_\mu + F_2(p^2, q^2) \bar{p}_\mu, \]

where \(q = p - p'. \)

Equations (1) and (2) can be calculated in two different ways: using quark degrees of freedom—the theoretical or OPE side—or using hadronic degree of freedom—the phenomenological side.

Using the above currents to evaluate the correlation functions (1) and (2), the theoretical or QCD side is obtained.

The framework to calculate the correlators in the QCD side is the Wilson operator product expansion (OPE).

\[\Pi^{(D)}_\mu (x, y) = \langle 0 | T \left(j^K_\mu(x) j^\dagger_D(y) j^{D_0}_\mu(0) \right) | 0 \rangle, \]

\[\Pi^{(D)}_\mu (x, y) = \bar{A}_\mu 1 + \bar{B}_\mu \langle q\bar{q} \rangle + ..., \]

The article is published in the original.
where \(I \) is the identity operator, \(A_\mu(x, y) \) is the perturbative contribution, \(\langle q\bar{q} \rangle \) is the quark condensate and \(\overline{A}_\mu(x, y) \) is the respective coefficient.

For each one of the invariant amplitudes appearing in Eq. (3), we can write a double dispersion relation over the virtualities \(p^2 \) and \(p'^2 \), holding \(Q^2 = -q^2 \) fixed:

\[
\Pi^{(\text{per})}_{\mu}(p^2, p'^2, Q^2) = -\frac{1}{4\pi^2} \int ds \int ds' \rho_{\mu}(p^2, p'^2, Q^2) \frac{\rho_{\mu}(p^2, p'^2, Q^2)}{(s-p^2)(s'-p'^2)} \tag{6}
\]

+ subtraction terms,

where \(\rho_{\mu}(s, Q^2) \) equals the double discontinuity of the amplitude \(\Pi_\mu(q^2, p'^2, Q^2) \), and is calculated using the Cutkosky’s rules. The invariant amplitudes receive contributions from all terms in the OPE. The first one of those contributions comes from the perturbative term and it is represented in Fig. 1.

We can work with any structure appearing in Eq. (3), but those which have less ambiguities in the QCD sum rules approach is selected, which means, less influence from the higher dimension condensates and a better stability as a function of the Borel mass and any structure, appearing in phenomenological side. Because only the \(p_{\mu}' \) structure appears in phenomenological side, the \(p_{\mu}' \) structure is chosen. In this structure, the quark condensate (the condensate of lower dimension) contributes in the case of D meson off-shell. Using the following relations:

\[
B_1 = \frac{1}{\lambda(s, s', q^2)} [2s'\Delta - \Delta' u],
\]

\[
B_2 = \frac{1}{\lambda(s, s', q^2)} [2s\Delta' - \Delta u].
\]

And

\[
I_0(s, s', q^2) = \frac{1}{4\lambda^2(s, s', q^2)},
\]

\[
\Delta = (s + m_3^2 - m_1^2),
\]

\[
\Delta' = (s' + m_3^2 - m_1^2),
\]

\[
u = s + s' - q^2,
\]

\[
\lambda(s, s', q^2) = s^2 + s'^2 + q^4 - 2sq^2 - 2s'q^2 - 2ss'.
\]

The corresponding perturbative spectral densities which enter in Eq. (6) are:

\[
\rho^{(D)}_\mu(s, s', Q^2) = \frac{3}{2\lambda(s, s', Q^2)} \left(m_1^2 + 2m_2m_3 - s + [(2m_2^2 + 2m_3m_3 - s + Q^2 + s')(m_1^2 + Q^2 + s') + s(s' - Q^2 - s')] \right) \lambda(s, s', Q^2) \tag{7}
\]

for D off-shell, and

\[
\rho^{(K)}_\mu(s, s', Q^2) = \frac{3}{2\lambda(s, s', Q^2)} \left(m_1^2 + 2m_2m_3 - s + [(2m_2^2 + 2m_3m_3 - s + Q^2 + s')(m_1^2 + Q^2 + s') + s(s' - Q^2 - s')] \right) \lambda(s, s', Q^2) \tag{8}
\]

For K off-shell. Here

\[
s = s^2, \quad s' = p^2, \quad t = -Q^2,
\]

\[
\lambda(s, s', t) = s^2 + s'^2 + Q^2 - 2st - 2ss' - 2ts'.
\]

3. NUMERICAL CALCULATIONS AND DISCUSSIONS

The non-perturbative contributions in the QCD side containing the quark–quark and quark–gluon condensate are calculated. The quark–quark condensate is considered for light quarks \(u, d \) and \(s \). Contributions of the quark–gluon condensate are zero after applying the double Borel transformation with respect to both variables \(p^2 \) and \(p'^2 \), because only one variable appears in the calculations. Contributions of The quark–quark condensate are given by,

\[
\Pi^{(ss)}_\mu(q^2) = -\langle ss \rangle \left[\frac{1}{4} Tr(F^{(ss)}_\mu(p, p')) - \frac{m_s}{16} Tr \left(\frac{\partial}{\partial q^2} \frac{\partial}{\partial q'^2} F^{(ss)}_\mu(p, p') \right) \gamma_{\alpha} \right] + \frac{1}{32} (m_2^2 - m_0^2) \tag{9}
\]

\[
\times Tr \left[\frac{\partial^2}{\partial q^2} \frac{\partial^2}{\partial q'^2} F^{(ss)}_\mu(p, p') \right].
\]

Where \(\langle ss \rangle = 0.8 \langle q\bar{q} \rangle \), \(\langle q\bar{q} \rangle = (-0.245)^3 \) [6], and,

\[
F^{(ss)}_\mu(p, p') = \gamma_{\mu} \gamma_{5} s_{\mu}^{ik} (p) \gamma_{5} s_{\upsilon}^{kj} (-p').
\]

For the K off-shell, there is no quark–quark and quark–gluon condensate contribution. Our calculations show that for two cases D and K off-shell, the gluon condensate contributions are very small and we can easily ignore them in our calculations. The phenomenological side of the vertex functions are obtained considering the contributions of the D and Ds mesons to the matrix element in Eq. (1) and the D and K mesons to the matrix element in Eq. (2). The