Spectroscopy of 40Ca and negative-parity bands

S. Torilov1,2, S. Thummerer2, W. von Oertzen1,2,a, Tz. Kokalova1,2, G. de Angelis2,4, H.G. Bohlen2, A. Tumino2,3, M. Axiotis4, E. Farnea5, N. Marginean4, T. Martinez4, D.R. Napoli4, M. De Poli4, S.M. Lenzi5, C. Ur5, M. Rousseau6, and P. Papka6

1 Freie Universit"at Berlin, Fachbereich Physik, Arnimallee 14, D-14195 Berlin, Germany
2 Hahn-Meitner-Institut Berlin, Glienicker Strasse 100, D-14109 Berlin, Germany
3 INFN-Laboratori Nazionali del Sud and Universit`a di Catania, Via S. Sofia 44, I-95123 Catania, Italy
4 INFN-Laboratori Nazionali di Legnaro, Legnaro, Italy
5 Dipartimento di Fisica and INFN, Padova, Italy
6 Institut de Recherches Subatomiques, IReS, Strasbourg, France

Received: 2 May 2003 / Revised version: 23 September 2003 / Published online: 20 January 2004 - © Societ`a Italiana di Fisica / Springer-Verlag 2004
Communicated by D. Schwalm

Abstract. We have studied the reactions 28Si + 24Mg → 52Fe → 40Ca$^* + 3\alpha$ as well as the binary channel 52Fe → 40Ca$^* + ^{12}$C*, in order to search for deformed states, which form rotational bands in 40Ca. We observe positive- and negative-parity bands. The negative-parity band is proposed to be a partner of an inversion doublet with the positive-parity states being based on 4p–4h configurations. The properties of the positive-parity states are discussed on the basis of the shell model and the parity doublet on the basis of a cluster model with intrinsic reflection asymmetric shapes.

PACS. 21.10.-k Properties of nuclei; nuclear energy levels – 21.60.Gx Cluster models

1 Introduction

States in nuclei in the vicinity of the $N = Z$ line are known to show strong clustering phenomena. In particular, several bands in 40Ca have been proposed to have structures, which are based on 4p–4h and 8p–8h excitations [1,2]. Such excitations can also be related to strong α-particle clustering configurations [3–5]. The mentioned states are best populated in reactions in which clustering is already present in the target and the projectile.

A large number of states have been observed in α-particle transfer reactions [3,6–8]. In particular, with the 36Ar(6Li, d) reaction the spin and parity of many low-lying states have been established [7,8]. The detailed γ-spectroscopy of nuclei around 40Ca has only been recently resumed using highly sensitive γ-detector arrays [9–12]. The most recent result on γ-spectroscopy of 40Ca has established deformed bands with 4p–4h and 8p–8h character [9,13].

To populate 40Ca for γ-spectroscopy we have chosen the 24Mg(28Si, 3α) reaction at a rather high incident energy of 139 MeV, in order to have the 3α channel with enough counting rate in the compound decay channels. Such incident energy allows the observation of binary re-

actions with the emission of the 12C*(0$^+_2$) state, at an excitation energy of 7.654 MeV, which is at 379 keV above the 3α-threshold in 12C (see also refs. [14]). The Q-value of −7.8 MeV for the three α-particles is the same as for the reaction 24Mg(28Si, 12C*(0$^+_2$))40Ca. The latter can be observed in the silicon $\Delta E-E$ detector telescopes by the break-up of this excited state into α-particles.

We report here on the results of the spectroscopy of the 40Ca-nucleus from the 24Mg(28Si, 3α)40Ca reaction.

2 Experimental set-up and γ-spectra

The present experiment has been performed with the γ-detector array GASP and the charged-particle detector ball ISIS [15]. In the experiment absorber foils have been used inside the ISIS-ball to prevent the registration of the elastically scattered heavy ions in the silicon detectors. Only light particles up to α-particles were registered.

The detection of heavier (unbound) fragments becomes possible for states with very small decay energies through the decay into α-particles as for 8Be(0$^+_1$) and 12C*(0$^+_2$). The relevant individual energies of the α-particles in their center-of-mass frame are so small that the decay cone for the two and three α-particles is in the range of 10°–15°, which thus fits well into the opening angle (29°) of one
ISIS ΔE-E telescope. Thus, we are able to detect simultaneously the α-particles from the compound decay as well as the spontaneous decay of a weakly bound state by the double and triple pile-up lines. Details on the observation of the 8Be(0^+_3) and the 12C(0^+_2) are reported in ref. [14] (see also ref. [16]). The 24Mg targets were self-supporting foils of 0.5 mg/cm2 thickness. At the incident 28Si beam energy of 139 MeV, we have a large contribution of the compound reaction in the 3α channel. We cite the measured total count rates $N(M\alpha)$ for the multiplicities in the 1α up to 4α channels:

$N(1\alpha) = 8.7 \cdot 10^7,$

$N(2\alpha) = 1.5 \cdot 10^7,$

$N(3\alpha) = 0.9 \cdot 10^6,$

$N(4\alpha) = 0.018 \cdot 10^6.$

The counts for the binary emission process with 12C$^+$ are 0.4 \cdot 106. The relative yields cited correspond to a total geometrical efficiency ϵ of the ISIS-detector ball of ≈ 0.35 for singles (see also ref. [14]). We are able to use both the 3α channel as well as the 12C$^+(0^+_2)$ channel for the Doppler-shift correction of the γ-spectra and for the selection of the 40Ca channel; subsequent decays, however, are not selected by this particle trigger, and can only be removed by γ-gating.

2.1 Discussion of the charged-particle and γ-spectra

The relatively high velocity of the compound nucleus and the larger mass emitted mean that the γ-spectra must be corrected for Doppler-shifts on an event-by-event basis.

Fig. 1. Plot of ΔE-E signals as observed with the ISIS charged-particle detector system. The events with the emission of single α's, 8Be and with 12C(0^+_2) are indicated.

Fig. 2. Doppler-corrected γ-spectrum selected with the 3α channel, and the 12C(0^+_2) channel, respectively. Solid lines mark the γ-transitions for 40Ca. Dashed lines are the γ-transitions for 39K.

The recoil velocities have been obtained using the momentum vectors of the coincidently registered charged particles. We show in fig. 1 the plot of the charged-particle identification as observed with the ISIS-ball (mainly the first ring with six telescopes contributes in the chosen kinematic conditions). The γ-spectra of 40Ca can thus be obtained with three different charged-particle triggers:

a) 3α-particles,
b) 8Be + α-particle emission, and
c) 12C$^+(0^+_2)$ emission.

For all three cases a satisfactory Doppler-shift correction was obtained corresponding, for a 1 MeV γ-transition, to a FWHM of approximately 10 keV.

The energy spectra of the α-particles, the 8Be- and the 12C$^+(0^+_2)$ clusters are shown in ref. [14]. We show in fig. 2 the γ-spectra obtained with two different particle gates, the 3α trigger and the 12C$^+(0^+_2)$ trigger. In these figures we observe also transitions from other nuclei. After selection of the 12C$^+(0^+_2)$ channel we observe a strong increase of 39K as well as of 36Ar transitions (4α-particles emission). The main part next to 40Ca corresponds to 39K, with an additional proton emission. One can see that these peaks are much stronger than those of 40Ca for 12C$^+$ emission. One can deduce from the results shown in fig. 2 and fig. 3 that the intensity of the γ-transitions in 40Ca after 3α emission are approximately 12 times larger than after a 12C$^+(0^+_2)$ emission.

Further γ-spectra were obtained by setting γ-gates in the higher excitation energy for the establishment of the