RESEARCH ON THE CONTINUOUS POSITIONING CONTROL TO SERVO-PNEUMATIC SYSTEM

TAO Guo-liang(陶国良), WANG Xuan-yin(王宣银), LU Yong-xiang(路永祥)

(The State Key Laboratory of Fluid Power Transmission and Control of Zhejiang University, Hangzhou 310027, China)

Received July. 28, 2000; revision accepted Sept. 1, 2000

Abstract: Pneumatic driven system has been widely used in industrial automation mainly for relatively simply tasks with open-loop control. With regard to closed-loop controlled axes in robotics, servo-electric driven systems have been dominant up to now. This paper introduces a new closed-loop control servo-pneumatic system that can do continuous positioning. The mathematical model of the servo-pneumatic system was developed accurately through analysis of the flow characteristics of the proportional flow valve and the friction of the cylinder. The optimum control strategy with friction compensation is presented in this paper. Experiments demonstrate that the servo-pneumatic system has excellent tracking characteristics and can rival the expensive servo-electric system in many areas of industrial control.

Key words: mathematical model, servo-pneumatic, robot, positioning

INTRODUCTION

Servo-pneumatic systems have been studied since the 1950's. Due to their natural characteristics of air compressibility, poor damping ability, significant mechanical friction, and strong nonlinearities, their application was restricted. With the rapid development in the field of electronics (especially digital electronics) and of modern control theory, many servo-pneumatic position control systems have been developed in the automation industry (Zhou, 1999).

This paper presents a mathematical model of a servo-pneumatic system developed accurately through analysis of the flow characteristics and the mechanical friction. As many previous servo-pneumatic systems generally function point-to-point and as our intensive research on the continuous path tracking by friction compensation showed that nonlinear mechanical friction causes a stick-slip response in the servo-pneumatic system (Yang et al., 1997; Tokashiki et al., 1999); we developed a servo-pneumatic robot consisting of three-degree-of-freedom servo-pneumatic axes. Experiment results showed that the robot could do well in continuous position tracking.

MATHEMATICAL MODEL OF VALVE-CONTROLLED SERVO-PNEUMATIC CYLINDER

Fig. 1 shows a valve-controlled cylinder. The mass of gas in chamber A with volume V_a is m_a and that in chamber B with volume V_b is m_b. ρ_a is the mass density of the gas in the chamber A and ρ_b is that in B.

The continuous flow equations are
Research on the continuous positioning control to servo-pneumatic system

\[\frac{dm_a}{dt} = \frac{d(p_a V_a)}{dt} \]

\[\frac{dm_b}{dt} = \frac{d(p_b V_b)}{dt} \]

The pressure change in the cylinder chambers can be obtained from the following equations deduced from the energy equations of gas,

\[\frac{dp_a}{dt} = R \frac{C_p}{C_v} T_a \frac{q_{ma}}{V_a} - \frac{C_p}{C_v} \frac{p_a}{V_a} \frac{dV_a}{dt} \] \hspace{1cm} (3)

\[\frac{dp_b}{dt} = R \frac{C_p}{C_v} T_b \frac{q_{mb}}{V_b} - \frac{C_p}{C_v} \frac{p_b}{V_b} \frac{dV_b}{dt} \] \hspace{1cm} (4)

where, \(T_a \), air supply temperature;
\(C_p \), specific heat at constant pressure;
\(C_v \), specific heat at constant volume;

Sanvill’s flow rate equation (Sanvill et al., 1971) is normally used in the mathematical model,

Sanvill’s flow rate equation and Bobrow’s flow rate equation could not fit perfectly with the flow rate trend curve (Fig.2 and Fig.3). So we derived a new flow equation which can fit the flow rate trend curve very well (Fig.4).

Fig. 2 Sanvill’s flow curve and experimental flow trend

Fig. 3 Bobrow’s flow curve and experimental flow trend

Fig. 4 New flow curve and experimental flow trend

Where, \(C_R \) and \(C_B \) are experimental coefficients, \(\lambda = 0.25 \).

In order to reduce cylinder friction, we used a compact cylinder with linear guide. The friction model was optimized.

\[F_f = \pm (F_j - k_{v1} \cdot v), \text{ when } v < v_d \]

\[F_f = \pm (F_j - k_{v1} \cdot v_d + k_{v2} \cdot (v - v_d)), \text{ when } v \geq v_d \] \hspace{1cm} (8)