The Relationship Between Serum Concentration and Therapeutic Effect of Haloperidol in Patients with Acute Schizophrenia

Sven Ulrich,1 Cornelius Wurthmann,2 Matthias Brosz3 and Frank P. Meyer1

1 Institute of Clinical Pharmacology, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
2 Psychiatric Clinic, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
3 Institute of Biometry and Medical Informatics, University Hospital, Otto-von-Guericke University, Magdeburg, Germany

Contents

Summary .. 228

1. Serum Concentration–Therapeutic Effect Relationship (SCTER) of Antipsychotic Drugs ... 228
 1.1 Phenothiazines and Thioxanthenes .. 229
 1.2 Haloperidol ... 230

2. Quality Assessment of SCTER Studies ... 231
 2.1 Selection of Literature ... 231
 2.2 Description of the Total Study Score (TSS) .. 232
 2.3 Evaluation of Studies of the SCTER of Haloperidol in Acute Schizophrenia .. 241
 2.4 Development of the Study Design Since 1980 241

3. Results of SCTER Studies with Regard to Their Quality Assessment ... 241
 3.1 Mathematical Models Used for the Analysis of SCTER 241
 3.2 Discussion of the Results in Dependence on TSS 246
 3.3 Position of the Therapeutic Window .. 248
 3.4 Mean Effect-Size of Treatment with Serum Concentrations Within the Therapeutic Window vs Outside the Therapeutic Window: a Meta-Analysis .. 249
 3.5 Combination of Available Data in 1 SCTER 249
 3.6 Covariates Influencing the SCTER of Haloperidol 252
 3.7 SCTER Studies of Haloperidol in Institutionalised Long Term Inpatients .. 254

4. Application of Haloperidol Serum Concentration Assay in Clinical Practice and Research .. 254
 4.1 Therapeutic Window or Target Serum Concentration 254
 4.2 Blood Sampling and Analytical Method .. 255
 4.3 Patient Selection for Therapeutic Drug Monitoring of Haloperidol 255
 4.4 Premedication and Comedication ... 256
 4.5 Interpretation of Serum Concentrations and Dosage Adjustment 256
 4.6 Application in Research .. 257

5. Serum Concentration Assay of Metabolites .. 257
 5.1 Reduced Haloperidol ... 257
 5.2 Haloperidol Pyridinium and Reduced Haloperidol Pyridinium 259

6. Conclusions .. 259
Summary

Haloperidol is the most commonly used antipsychotic drug in the therapy of acute schizophrenia. Clinicians have been using therapeutic drug monitoring in an attempt to improve clinical application of this drug. The scale of interest in this area is emphasised by the large number of studies (about 50) concerning the serum concentration-therapeutic effect relationship (SCTR) of haloperidol, including 35 studies on patients with acute schizophrenia. However, conflicting results concerning the existence and position of a therapeutic window have emerged.

This article aims to provide a comprehensive review of the study design of studies in patients with acute schizophrenia before the study data are used for decision-making. For this purpose, a reproducible system for the evaluation of studies in this special area, a so-called total study score (TSS), was developed on an empirical basis. Thus, insufficient study design was found to be a reason for negative results. On the other hand, in spite of a great variability, the majority of studies with good design provided evidence for a significant SCTR: a bisigmoidal dependence of clinical effect on haloperidol serum concentration.

The therapeutic effects of haloperidol increase at low concentrations, and the concentration has a maximum effect at about 10 μg/L and again decreasing at higher concentrations. The data of 552 patients also fit to this model in a single scatter plot (pseudo-r² = 0.076, p < 0.001). The position of the therapeutic window was determined at about 5.6 to 16.9 μg/L. Patients treated with serum concentrations within this optimal range had a significantly better response compared with outside this range (p < 0.001, Student t-test). Therefore, a quantitative synthesis of all available data by means of effect-size analysis provides a mean effect-size (\hat{g}) = 0.499 ± 0.182 (standard deviation) for the comparison of haloperidol-treatment with serum concentrations within versus outside the therapeutic window.

Thus, because of this moderate positive effect, serum concentration assay of haloperidol is recommended for patients with acute schizophrenia in a therapeutic drug monitoring programme. The modalities of haloperidol therapeutic drug monitoring in clinical practice are discussed, e.g. patient selection, method and time for serum concentration measurement, influence of premedication and comedication, interpretation of results and dose adjustment. Clinical investigations into this subject should focus on covariates which are responsible for the variability of the SCTR. Serum concentration assay is advised for investigations of nonresponse to exclude patients with pseudo-drug resistance.

1. Serum Concentration–Therapeutic Effect Relationship (SCTR) of Antipsychotic Drugs

The introduction of antipsychotic drugs in the 1950s was a fundamental advance in the therapy of schizophrenia and schizoaffective disorders.[1] The first drug introduced was chlorpromazine, a phenothiazine, followed a few years later by haloperidol, the guiding compound of the butyrophenone group. In combination with a new strategy of public healthcare in psychiatry, which could only be based on these drugs, a decrease in the number of psychiatric inpatients was achieved (fig. 1) and a qualitative improvement in the treatment of the remaining patients became possible.[2-4]

In spite of this success, it rapidly became clear that this was often at the cost of considerable adverse effects, such as extrapyramidal adverse effects, tardive dyskinesia, circulatory disturbances and antipsychotic malignant syndrome. Furthermore, it was recognised that the negative symptoms of schizophrenia were not sufficiently improved and,