Prazosin:
A Review of its Pharmacological Properties and Therapeutic Efficacy in Hypertension

R.N. Brogden, R.C. Heel, T.M. Speight and G.S. Avery

Australasian Drug Information Services, Auckland

Various sections of the manuscript reviewed by: A. Amery, Department of Medicine, Academisch Ziekenhuis Sint-Rafael, Belgium; J.R. Curtis, Charing Cross Hospital, London, England; R.W. Gifford, The Cleveland Clinic Foundation, Cleveland, Ohio, USA; L.J. Goldberg, Department of Pharmacological and Physiological Sciences, The University of Chicago, Illinois, USA; F. Gross, Department of Pharmacology, University of Heidelberg, Federal Republic of Germany; Priscilla Kincaid-Smith, Department of Medicine, Royal Melbourne Hospital, Victoria, Australia; P. Lund-Johansen, Department of Medicine, University of Bergen School of Medicine, Norway; M. Moser, Davis Avenue Medical Center, White Plains, New York, U.S.A.; G. Onesti, Division of Nephrology and Hypertension, Hahnemann, Medical College, Philadelphia, USA; J.S. Peel, Hawke's Bay Medical Research Foundation, Napier, New Zealand; J.J.S. Robertson, Medical Research Council Blood Pressure Unit, Western Infirmary, Glasgow, Scotland; F.O. Simpson, Department of Medicine, University of Otago, Dunedin, New Zealand; P. Sleight, Department of Cardiovascular Medicine, Radcliffe Infirmary, Oxford, England. G.S. Stokes, Medical Research Department, Sydney Hospital, Australia; A.S. Turner, Cardiology Department, Napier Hospital, New Zealand.

Table of Contents

Summary

1. Animal Pharmacodynamic Studies
 1.1 Mode of Action
 1.2 Effect on Blood Pressure
 1.3 Effect on Heart Rate
 1.4 Effect on Plasma Renin
2. Pharmacokinetic Studies in Animals
3. Human Pharmacology
 3.1 Pharmacodynamic Studies
 3.1.1 Single Dose and Short-Term Studies
 3.1.2 Effect of Medium-Term Therapy
 3.1.3 Effect of Long-Term Therapy
 3.2 Effect on Renal Function
 3.3 Effect on Plasma Renin Activity
Summary

Prazosin\(^1\) is a peripheral vasodilator antihypertensive agent derived from quinazoline. Animal studies suggest that its hypotensive effect results from relaxation of peripheral arterioles as a consequence of blockade of post-synaptic \(\alpha\)-adrenoceptors. In man, the most important haemodynamic effect is a reduction in total peripheral resistance, but in contrast to hydralazine, tachycardia is seldom produced.

Therapeutic trials have shown prazosin to be effective in lowering blood pressure in all grades of hypertension: in mild and some cases of moderate hypertension when used alone and in moderate and severe hypertension when used in combination with other agents. The antihypertensive effect of prazosin is enhanced by the concomitant administration of a thiazide diuretic or a \(\beta\)-adrenoceptor blocking drug. Clinical experience with combination antihypertensive therapy in severe hypertension indicates that a combination of prazosin, a \(\beta\)-adrenoceptor blocking drug and a thiazide diuretic is effective in many such patients. In patients with mild or moderate hypertension, the reduction in blood pressure induced by prazosin is comparable with that of \(\alpha\)-methyldopa when the dose of both drugs is adjusted to obtain optimum effect and the overall incidence of side-effects and their severity has been similar with both drugs under the conditions of controlled therapeutic trials, although the nature of the side-effects differs (drowsiness or tiredness being more common and dizziness more persistent with methyldopa).

The most important side-effect is marked postural hypotension after the initial dose and sometimes after a rapid dose increment. This effect can be minimised by beginning treatment with a low dose (0.5mg tablets 2 or 3 times daily; 1mg capsules 3 times daily) and increasing dosage gradually. Overall, syncope has occurred in fewer than 0.2\% of patients given low initial doses. Postural hypotension is not usually a problem during continued treatment.

1 'Minipress', 'Hypovase', 'Hypovasol', 'Peripress' (Pfizer).