Betaxolol
A Review of its Pharmacodynamic and Pharmacokinetic Properties, and Therapeutic Efficacy in Hypertension

R. Beresford and R.C. Heel
ADIS Drug Information Services, Auckland

Various sections of the manuscript reviewed by: J.P. Fillastre, Centre Hospitalier Régional & Universitaire de Rouen, Service de Néphrologie et d'Hémodialyse, Boisguillaume, France; M. Frisk-Holmberg, Section of Clinical Pharmacology, Uppsala University's Biomedical Centrum, Uppsala, Sweden; D.C. Harrison, Cardiology Division, Stanford University School of Medicine, Stanford, California, USA; H. Kesteloot, Department of Cardiology, Universitätsklinik Ziekenhuizen Sint-Rafael-Gasthuisberg, Leuven, Belgium; M. Pauh, Cardiology, Centre Hospitalier Intercommunal Léon Touhadjian, Poissy, France; B.N.C. Prichard, Department of Clinical Pharmacology, The Rayne Institute, School of Medicine, University College London, London, England; J.G. Riddell, Department of Therapeutics and Pharmacology, Queen's University of Belfast, Belfast, Northern Ireland; R.C. Shanks, Department of Therapeutics and Pharmacology, Queen's University of Belfast, Belfast, Northern Ireland; P. Turner, Department of Clinical Pharmacology, St Bartholomew's Hospital Medical College, London, England.

Contents

Summary ... 7
1. Pharmacodynamic Studies ... 9
 1.1 β-Adrenoceptor Blocking Activity ... 9
 1.1.1 Relative Potency .. 9
 1.1.2 Cardioselectivity .. 10
 1.1.3 Duration of Effect .. 11
 1.2 Partial Agonist and Local Anaesthetic Activity ... 12
 1.3 Cardiovascular Effects ... 12
 1.3.1 Effects on Heart Rate and Other Haemodynamic Variables 12
 1.3.2 Effect on Left Ventricular Hypertrophy ... 13
 1.3.3 Electrophysiological Effects ... 13
 1.3.4 Myocardial Oxygen Consumption ... 14
 1.4 Effects on Renal Function .. 14
 1.5 Respiratory Effects ... 14
 1.6 Metabolic Effects ... 15
 1.6.1 Effects on Glucose Metabolism ... 15
 1.6.2 Effects on Lipids and Lipoproteins .. 16
2. Pharmacokinetic Studies .. 17
 2.1 Absorption and Plasma Concentrations .. 17
 2.2 Distribution ... 19
2.3 Metabolism .. 19
2.4 Excretion .. 19
2.5 Effect of Age and Renal or Hepatic Disease on Pharmacokinetics 19
3. Therapeutic Trials in Hypertension ... 20
 3.1 Open Studies ... 20
 3.2 Comparisons with Placebo ... 21
 3.3 Comparisons with Propranolol ... 21
 3.4 Comparisons with Acebutolol and Atenolol .. 23
 3.5 Comparison with Chlorthalidone ... 23
4. Side Effects ... 23
5. Dosage and Administration .. 24
6. The Place of Betaxolol in Therapy .. 25

Synopsis:
Betaxolol\(^1\) is a relatively cardioselective \(\beta\)-adrenoceptor blocking drug, with no partial agonist (intrinsic sympathomimetic) activity and weak membrane-stabilising (local anaesthetic) activity. Its pharmacokinetic properties of most interest include high bioavailability after oral administration, and a long elimination half-life. It has a narrow dose-response range, which obviates the need for dose titration, with 10 to 20mg once daily being the usual dosage. This dose reduces systolic and diastolic blood pressures by about 15mm Hg in most patients with mild to moderate hypertension. In a few comparative studies betaxolol 20mg daily was as effective as atenolol and moderate doses of propranolol, and more effective than acebutolol, in reducing blood pressure in such patients. Betaxolol has been well tolerated in most patients.

Thus, betaxolol is an effective alternative to other \(\beta\)-blocking drugs in patients with essential hypertension, with properties that may offer advantages in some patients.

Pharmacodynamic Studies: Betaxolol is a relatively cardioselective \(\beta\)-adrenoceptor blocking drug which has no partial agonist activity and very little membrane-stabilising activity (based on standard animal models). Its \(\beta\)-blocking potency in animal and human studies was about 4 times that of propranolol after oral administration. It has a long duration of action, with a significant reduction in exercise-induced tachycardia being observed in healthy subjects 48 hours after the administration of a single 40mg dose. Resting heart rate was also reduced by betaxolol (by about 15 to 30%) in both healthy subjects and in patients with cardiovascular disorders. Both systolic and diastolic blood pressures are reduced by betaxolol, as is myocardial oxygen demand.

In subjects with normal renal function, betaxolol did not alter glomerular filtration rate, but produced a small increase in renal blood flow. Its effects on sodium and potassium excretion varied between studies, and need further clarification.

Respiratory function of normal subjects was not affected by betaxolol, while that of subjects with airways disease was less affected by betaxolol than by propranolol.

In non-diabetic healthy subjects or patients with cardiovascular disease, betaxolol did not affect either glucose metabolism, the reduction in blood pressure produced by insulin, or the time taken to recover from hypoglycaemia (unlike propranolol which prolonged recovery time).

Similarly, insulin-induced tachycardia was minimally affected by betaxolol (but was reduced by propranolol). However, the effects produced by betaxolol on insulin-induced changes in free fatty acid and glycerol serum concentrations were similar to those produced by propranolol. Mean total cholesterol and triglyceride serum concentrations were

\(^1\) 'Kerlon', 'Kerlone' (Lorex: Synthelabo).