Pefloxacin

A Review of its Antibacterial Activity, Pharmacokinetic Properties and Therapeutic Use

John P. Gonzalez and Julian M. Henwood

ADIS Press International Limited, Manchester, England

Various sections of the manuscript reviewed by:

- **K.E. Aldridge**, School of Medicine in New Orleans, Louisiana State University Medical Center, New Orleans, Louisiana, USA;
- **B.I. Davies**, Streeklaboratorium voor de Volksgezondheid, De Wever-Ziekenhuis, Heerlen, The Netherlands;
- **P. Dellamonica**, Centre Hospitalier Régional et Universitaire de Nice, Hôpital de L'Archet, Nice, France;
- **K. Hara**, Nagasaki University School of Medicine, Nagasaki, Japan;
- **R.N. Jones**, The Clinical Microbiology Institute Inc., Tualatin, Oregon, USA;
- **L.A. Mandell**, McMaster University, McMaster Medical Unit, Hamilton, Ontario, Canada;
- **H.C. Neu**, College of Physicians & Surgeons of Columbia University, Department of Medicine, New York, New York, USA;
- **M. Newman**, Hôpital Cochin, Paris, France;
- **S.W. Newsom**, Hospital Infection Society, Papworth Hospital, Cambridge, England;
- **C.E. Nord**, Karolinska Institute, Huddinge Hospital, Huddinge, Sweden;
- **I. Phillips**, Department of Microbiology, St Thomas's Hospital, London, England;
- **A.D. Russell**, Welsh School of Pharmacy, University of Wales College of Cardiff, Cardiff, Wales;
- **P. Van der Auwera**, Institut Jules Bordet, Centre des Tumeurs de l'Université libre de Bruxelles, Brussels, Belgium;
- **J. Vanderdonckt**, Koningin Elisabeth Instituut, Oostduinkerke, Belgium;
- **W.J.A. Wijnands**, Department of Pulmonary Diseases, Foundation Deventer Hospitals, Deventer, The Netherlands.

Contents

Summary .. 629

1. Antibacterial Activity .. 632
 1.1 *In Vitro* Antibacterial Activity .. 632
 1.1.1 Gram-Negative Bacteria .. 632
 1.1.2 Gram-Positive Bacteria .. 639
 1.1.3 Anaerobic Bacteria .. 639
 1.1.4 Chlamydia, Mycoplasma and Ureaplasma 640
 1.2 Activity Against Resistant Organisms 640
 1.3 Factors Influencing *In Vitro* Activity 641
 1.4 Bactericidal Activity .. 642
 1.5 Antibacterial Synergy .. 642
 1.6 Mechanism of Action and Development of Resistance 642
 1.7 Activity *In Vivo* .. 643

2. Pharmacological Effects ... 644
 2.1 Effects on the Immune System 644
 2.2 Toxicity Studies .. 645

3. Pharmacokinetic Properties 645
 3.1 Absorption and Plasma Concentrations 645
 3.2 Distribution .. 647
 3.3 Elimination .. 648
Pefloxacin: A Review

3.3.1 Elimination Half-Life ...651
3.4 Influence of Hepatic Function on the Pharmacokinetics of Pefloxacin651
3.5 Influence of Renal Function on the Pharmacokinetics of Pefloxacin651
3.6 Influence of Age on the Pharmacokinetics of Pefloxacin653
4. Therapeutic Trials ...653
4.1 Respiratory Tract Infections ..653
4.2 Urogenital Tract Infections ..654
4.3 Bone and Joint Infections ..654
4.4 Infections in Immunocompromised Patients656
4.5 Septicaemia and Surgical Infections ...658
4.6 Miscellaneous Serious or Difficult-to-Treat Infections658
5. Adverse Effects ..660
5.1 Clinical Symptoms ...660
5.2 Effects on Laboratory Indices ...660
5.3 Effects on Faecal Flora ..661
6. Drug Interactions ..662
6.1 Studies with Theophylline ...662
6.2 Other Drug Interactions ..662
7. Dosage and Administration ..662
8. Place of Pefloxacin in Therapy ..663

Summary

Pefloxacin is a fluorinated quinolone that is structurally related to nalidixic acid. It can be administered both orally and intravenously, and has a broad spectrum of in vitro activity against Gram-negative organisms and staphylococci. The pharmacokinetic profile of pefloxacin is characterised by high bioavailability after oral administration, a long half-life and good penetration of tissue and body fluids.

Data from mainly non-comparative studies suggest that pefloxacin has the potential for use in a variety of serious or difficult-to-treat and nosocomially acquired infections in hospitalised and immunocompromised patients. Such infections have included respiratory tract, urogenital tract, and bone and joint infections, septicaemia and surgical infections, in addition to severe Gram-negative infections in neutropenic cancer patients. Pefloxacin demonstrates comparable efficacy with ampicillin combined with gentamicin in upper gynaecological tract infections, ceftazidime in nosocomially acquired Gram-negative infections and co-trimoxazole (trimethoprim + sulphamethoxazole) in uncomplicated urinary tract infections and typhoid fever.

Although the place of pefloxacin in this new and expanding class of 4-quinolone antibacterial drugs has yet to be defined and it appears to be a well-tolerated and useful drug for the treatment of serious infections in hospitalised patients, further studies are awaited with interest for confirmation of these preliminary results.

Antibacterial Activity

Pefloxacin is a fluorinated quinolone which is structurally related to nalidixic acid. Most species of Enterobacteriaceae are susceptible or moderately susceptible to pefloxacin (MIC\(_{90}\) ≤ 2 mg/L); Providencia rettgeri is only moderately susceptible to the drug. For most species of Enterobacteriaceae the potency of pefloxacin was equivalent to that of enoxacin, ofloxacin, norfloxacin and cefotaxime, less than that of ciprofloxacin, and greater than that of nalidixic acid, ampicillin, amikacin, gentamicin and ceftazidime. Pefloxacin is a potent inhibitor of Neisseria gonorrhoeae and N. meningitidis, while strains of Acinetobacter are susceptible or moderately susceptible to the drug. Branhamella catarrhalis and Campylobacter species are susceptible or moderately susceptible to pefloxacin as well as to the other 4-quinolones tested. Haemophilus ducreyi is highly susceptible (MIC\(_{90}\) <