Verapamil
A Review of its Pharmacological Properties and Therapeutic Use in Coronary Artery Disease

Rex N. Brogden and Paul Benfield
Adis International Limited, Auckland, New Zealand

Various sections of the manuscript reviewed by:
R.W.F Campbell, Department of Cardiology, University of Newcastle, Newcastle upon Tyne, England; T. Endo, First Department of Internal Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan; J. Fischer Hansen, Department of Cardiology, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark; E. Freis, Hypertension Research Clinic, Veterans Affairs Medical Center, Washington, D.C., USA; O. Parodi, Istituto Di Fisiologica Clinica CNR, Pisa, Italy; E.L. Rose, BUPA North Cheshire Hospital, Warrington, Cheshire, England; T. Takabatake, Fourth Department of Internal Medicine, Shimane Medical University, Izumo, Japan; N.H. Wallén, Department of Clinical Pharmacology, Karolinska Hospital, Stockholm, Sweden; M.R. Weir, Division of Nephrology, University of Maryland School of Medicine, Baltimore, Maryland, USA.

Contents

Summary ... 793
1. Pharmacodynamic Properties ... 796
 1.1 Haemodynamic Effects ... 796
 1.1.1 Effect on Blood Pressure and Heart Rate 796
 1.1.2 Effects on Cardiac Haemodynamics .. 796
 1.1.3 Effects on Coronary Circulation and Myocardial Oxygen Consumption 797
 1.2 Cardioprotective Effects ... 798
 1.2.1 Effect on Infarct Size .. 798
 1.2.2 Effects on Regional Blood Flow .. 798
 1.2.3 Effects on Platelets and Catecholamine Release 799
 1.2.4 Antiatherosclerotic Effects and Effects on Lipids 800
2. Pharmacokinetic Properties .. 800
 2.1 Absorption and Plasma Concentrations ... 800
 2.2 Distribution and Elimination .. 801
 2.3 Influence of Age and Renal or Hepatic Disease 801
 2.4 Plasma Concentration-Clinical Effect Relationships 801
3. Therapeutic Efficacy ... 802
 3.1 Stable Angina ... 802
 3.1.1 Comparisons with Placebo ... 802
 3.1.2 Comparisons with Other Calcium Antagonists 802
 3.1.3 Comparisons with β-Blockers ... 803
 3.1.4 Comparisons with Isosorbide Dinitrate 804
 3.1.5 Comparative Efficacy of Different Formulations and Regimens of Verapamil 806
 3.1.6 Long Term Studies ... 806
 3.2 Unstable Angina .. 806
 3.3 Secondary Prevention after Acute Myocardial Infarction 807
 3.4 Primary Prevention in Patients with Angina and Established Coronary Artery Disease .. 808
 3.5 Use after Coronary Angioplasty .. 809
Verapamil has well proven efficacy in the treatment of patients with hypertension, and early studies indicated its efficacy in the treatment of coronary artery disease. The efficacy of verapamil relative to placebo in patients with stable angina pectoris is confirmed, and the drug is at least as effective as nifedipine, propranolol or metoprolol and of similar efficacy to bepridil and nicardipine when administered as a conventional or sustained release formulation.

Verapamil is the first calcium antagonist to be shown in a double-blind study to significantly reduce mortality and reinfarction rate after acute myocardial infarction in patients without heart failure. In these patients, the reduction in mortality achieved with verapamil was similar to that reported with β-adrenoceptor antagonists, suggesting that verapamil may be a suitable alternative to β-blockers as secondary prevention in patients intolerant of these drugs.

Recurrence of stenosis in patients who successfully undergo percutaneous transluminal coronary angioplasty (PTCA) limits the usefulness of the procedure. Verapamil has recently been shown to significantly reduce the rate of restenosis in patients with stable angina at risk of recurrence, although these initial results require confirmation.

Verapamil, therefore, is effective in the treatment of patients with stable angina pectoris, appears to be an alternative to β-blockers in selected patients as late start secondary prevention after acute myocardial infarction and has a potential role in preventing recurrent stenosis after PTCA, if initial results are confirmed.

Single intravenous doses of verapamil lower blood pressure, increase heart rate, decrease systemic vascular resistance and increase cardiac output in patients with coronary artery disease. However, during 4 weeks' treatment with verapamil 360mg daily blood pressure is decreased by only about 10% in patients without hypertension, and cardiac output, resting and exercise heart rate are unaffected. Assessment of the effects of oral verapamil on left ventricular function using doppler echocardiographic techniques revealed changes indicative of improved early filling and enhanced relaxation, although studies employing both invasive and noninvasive techniques reported a variable effect of intravenous verapamil on diastolic function. Generally however, the negative inotropic effect of verapamil is counterbalanced by its vasodilatory effect and consequent reduction in afterload. When administered intravenously, verapamil decreased coronary vascular resistance without altering myocardial oxygen consumption, or vice versa, in patients with coronary disease. The effect of verapamil on double product has also varied, with results ranging from significant to non-significant reductions.

Experimental studies have shown that calcium overload of the arterial wall is important to the pathogenesis of atherosclerotic lesions. Additionally, by inhibi-