Chapter 4

The Wavelet Transform on Spaces of Type S

4.1 Introduction

In this chapter we consider the wavelet transform (3.1.2) for $n = 1$ and write

$$W(\phi) = W\phi(b,a) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{ibw} \overline{\psi(aw)} \hat{\phi}(w) dw,$$

(4.1.1)

where $\hat{\phi}$ denotes the Fourier transform of function ϕ. The wavelet transform on Schwartz space $\mathcal{S}(\mathbb{R})$ was studied in Section 3.2. The spaces of type S play an important role in the theory of linear partial differential equations as intermediate spaces between those of C^∞ and of the analytic functions. The Fourier transform has been studied on the spaces of type S by Friedman [20] and Gel’fand and Shilov [21]. Nevertheless, there exist band-limited wavelets with subexponential decay [15], and also infraexponential decay [76]; see Section 4.6. The aim of the present chapter is to study the wavelet transform (4.1.1) on these spaces.

Let us recall the definitions of these spaces.

Definition 4.1.1. The space $S_\alpha(\alpha \geq 0)$ consists of all infinitely differentiable functions $\phi(x)(-\infty < x < \infty)$, satisfying the inequalities

$$\gamma_{k,q}(\phi) := \sup_{x \in \mathbb{R}} |x^k \phi^{(q)}(x)| \leq C_q A^k k^{k\alpha} (k, q = 0, 1, 2, \ldots),$$

(4.1.2)

where the constants A and C_q depend on the function ϕ. For $k = 0$, the expression $k^{k\alpha}$ is considered to be equal to 1.

Definition 4.1.2. The space $S_\beta(\beta \geq 0)$ consists of all infinitely differentiable functions $\phi(x)(-\infty < x < \infty)$, satisfying the inequalities

$$\gamma_{k,q}(\phi) := \sup_{x \in \mathbb{R}} |x^k \phi^{(q)}(x)| \leq C_k B^k q^{q\beta} (k, q = 0, 1, 2, \ldots),$$

(4.1.3)

where the constants B and C_k depend on the function ϕ.

\textbf{Definition 4.1.3.} The space $S_\beta^\alpha (\alpha \geq 0, \beta \geq 0)$ consists of all infinitely differentiable functions $\phi(x)$ ($-\infty < x < \infty$), satisfying the inequalities
\begin{equation}
\gamma_{k,q}(\phi) := \sup_{x \in \mathbb{R}} |x^k \phi^{(q)}(x)| \leq CA^kB^qk^{\alpha}q^{\beta}(k,q = 0,1,2,\ldots),
\end{equation}
where the constants A,B and C depend on the function ϕ.

The spaces of type S are closely interrelated by means of the Fourier transformation; namely, the formulae
\begin{equation}
\tilde{S}_\alpha = S_\alpha, \ \tilde{S}_\beta = S_\beta \text{ and } \tilde{S}_\alpha^\beta = S_\beta^\alpha
\end{equation}
hold.

We shall make use of the following inequalities in our investigation:
\begin{equation}
\frac{q!}{(q-k)!} = k! \left(\frac{q}{k}\right) \leq k! \sum_{k=0}^{q} \left(\frac{q}{k}\right) = k! \ 2^q
\end{equation}
and
\begin{equation}
(m+q)^{(m+q)\beta} \leq m^{\beta} q^{\beta} e^{m\beta} e^{q\beta}
\end{equation}
(See [20, p. 265]). In what follows we shall also need the following similar test function spaces, defined on the upper half-plane $H = \mathbb{R} \times \mathbb{R}_+$, called spaces of type \tilde{S}.

\textbf{Definition 4.1.4.} The space $\tilde{S}_\alpha(\mathbb{R} \times \mathbb{R}_+), \tilde{\alpha} = (\alpha_1, \alpha_2), \alpha_1, \alpha_2 \geq 0$ is defined to be the space of all functions $\phi \in C^\infty(\mathbb{R} \times \mathbb{R}_+)$ such that for all $l,s,k,t \in \mathbb{N}_0$,
\begin{equation}
\gamma_{l,s,k,t}(\phi) := \sup_{(b,a) \in \mathbb{R} \times \mathbb{R}_+} |a^l b^s \left(\frac{\partial}{\partial a}\right)^k \left(\frac{\partial}{\partial b}\right)^t \phi(b,a)| \leq C_{l,s,k,t} A_1^l A_2^s B_1^k B_2^t \alpha_1^\alpha_2^\beta,
\end{equation}
where the constants A_1, A_2 and $C_{l,s,k,t}$ depend on the testing function ϕ.

\textbf{Definition 4.1.5.} The space $\tilde{S}_\beta(\mathbb{R} \times \mathbb{R}_+), \tilde{\beta} = (\beta_1, \beta_2), \beta_1, \beta_2 \geq 0$ is defined to be the space of all functions $\phi \in C^\infty(\mathbb{R} \times \mathbb{R}_+)$ such that for all $l,s,k,t \in \mathbb{N}_0$,
\begin{equation}
\gamma_{l,s,k,t}(\phi) := \sup_{(b,a) \in \mathbb{R} \times \mathbb{R}_+} |a^l b^s \left(\frac{\partial}{\partial a}\right)^k \left(\frac{\partial}{\partial b}\right)^t \phi(b,a)| \leq C_{l,s,k,t} B_1^k B_2^t \beta_1^\beta_2,
\end{equation}
where the constants B_1, B_2 and $C_{l,s,k,t}$ depend on the function ϕ.

\textbf{Definition 4.1.6.} The space $\tilde{S}_\alpha(\mathbb{R} \times \mathbb{R}_+), \tilde{\alpha} = (\alpha_1, \alpha_2), \tilde{\beta} = (\beta_1, \beta_2), \alpha_1, \alpha_2, \beta_1, \beta_2 \geq 0$, is defined to be the space of all functions $\phi \in C^\infty(\mathbb{R} \times \mathbb{R}_+)$ such that for all $l,s,k,t \in \mathbb{N}_0$,
\begin{equation}
\gamma_{l,s,k,t}(\phi) := \sup_{(b,a) \in \mathbb{R} \times \mathbb{R}_+} |a^l b^s \left(\frac{\partial}{\partial a}\right)^k \left(\frac{\partial}{\partial b}\right)^t \phi(b,a)| \leq CA_1^l A_2^s B_1^k B_2^t \alpha_1^\alpha_2^\beta \beta_1^\beta_2,
\end{equation}
where the constants A_1, A_2, B_1, B_2 and C depend on ϕ.