Exact Lower Estimate of the Upper Limit of the Ratio of the Sum of Sine Series with Monotone Coefficients to its Majorant

A. Yu. Popov and A. P. Solodov

Moscow State University, Faculty of Mechanics and Mathematics,
Leninskij Gory, Moscow, 119991 Russia; e-mail: apsolodov@mail.ru

Moscow State University, Faculty of Mechanics and Mathematics,
Leninskij Gory, Moscow, 119991 Russia; e-mail: apsolodov@mail.ru

Received June 18, 2013

Abstract—An unimprovable lower estimate of the upper limit of the ratio of the sum of sine series with monotone coefficients to its majorant is obtained.

DOI: 10.3103/S0027132114040056

We study the asymptotic behavior of the sum of the sine series \(g(b, x) = \sum_{k=1}^{\infty} b_k \sin kx \) for \(x \to 0^+ \); the sequence of coefficients \(b = \{b_k\}_{k \in \mathbb{N}} \) monotonically tends to zero, i.e.,

\[
b_1 > 0, \ b_{k+1} \leq b_k \ \forall k \in \mathbb{N}, \ \lim_{k \to \infty} b_k = 0. \tag{1}
\]

Denote the class of all sequences (1) by \(\mathfrak{M} \). It was proved in [1] that the function \(v(b, x) = x \sum_{k=1}^{m(x)} kb_k \), \(m(x) = \lfloor \pi / x \rfloor \), is a majorant of \(g(b, x) \) on the interval \((0, \pi) \) for any sequence \(b \in \mathfrak{M} \). Therefore, for all \(b \in \mathfrak{M} \) the following inequality is valid:

\[
\overline{t}(b) = \lim_{x \to 0^+} \frac{g(b, x)}{v(b, x)} \leq 1. \tag{2}
\]

The asymptotic estimate \(g(b, x) - v(b, x) = O\left(x^3 \sum_{k=1}^{m(x)} k^3 b_k\right), \ x \to 0^+ \), derived by Telyakovskii [2] and the Hartman–Wintner theorem [3] stating that

\[
\lim_{x \to 0^+} \frac{g(b, x)}{x} = \begin{cases}
\sum_{k=1}^{\infty} kb_k, & \text{for } \sum_{k=1}^{\infty} kb_k < +\infty; \\
+\infty, & \text{for } \sum_{k=1}^{\infty} kb_k = +\infty
\end{cases}
\]

allow us to prove the limit relation

\[
b_k = O\left(k^{-2}\right), \ b = \{b_k\} \in \mathfrak{M} \Rightarrow \lim_{x \to 0^+} \frac{g(b, x)}{v(b, x)} = 1. \tag{3}
\]

Relations (2), (3) imply \(\max \{\overline{t}(b) \mid b \in \mathfrak{M}\} = 1 \).

What is the infimum of \(\overline{t}(b) \) taken over all sequences \(b \in \mathfrak{M} \)? Aljančić, Bojačić, and Tomić [4] proved that if a positive, decreasing, tending to zero, and slowly varying at infinity [5, p. 10] convex function \(b \) is given on the ray \([1, +\infty)\), then

\[
\sum_{k=1}^{\infty} b(x) \sin kx \sim x^{-1} b^{-1}(x^{-1}), \ x \to 0.
\]

Since in this case \(x \sum_{k=1}^{m(x)} kb(x) \sim (1/2) x b^{-1}(x^{-1}) m^2(x) \sim (\pi^2 / 2) x^{-1} b^{-1}(x^{-1}), \ x \to 0 \), then

\[
\lim_{x \to 0^+} \frac{g\left(\{b(n)\}, x\right)}{v\left(\{b(n)\}, x\right)} = \frac{2}{\pi^2}.
\]

Therefore, the inequality \(\inf \{\overline{t}(b) \mid b \in \mathfrak{M}\} \leq 2\pi^{-2} \) holds. We proved that the equality actually holds here.
Theorem 1. The following equality holds: \(\min \{ \mathcal{T}(b) \mid b \in \mathfrak{M} \} = 2\pi^{-2} \).

Due to the theorem of Aljančić, Bojač, and Tomic cited above, it is sufficient to verify that \(\mathcal{T}(b) \geq 2\pi^{-2} \) \((\forall b \in \mathfrak{M})\) to prove the theorem. We obtain a more fine result.

Theorem 2. For any sequence \(b \in \mathfrak{M} \) there exists a sequence of positive numbers \(\{x_p\} \), \(\lim_{p \to \infty} x_p = 0 \), such that for all \(p \in \mathbb{N} \) the inequalities \(g(b, x_p) > 2\pi^{-2} v(b, x_p) \) are valid.

In its turn, Theorem 2 follows from Theorem 3.

Theorem 3. Given arbitrary \(b \in \mathfrak{M} \) and \(n \in \mathbb{N} \), there exists a natural number \(N > n \) such that the following inequality holds:

\[
\int_{\pi/2N}^{\pi/2n} (g(b, x) - 2\pi^{-2} v(b, x)) \, dx > 0.
\]

The existence of the sequence \(\{x_p\}_{p \in \mathbb{N}} \) stated in Theorem 2 is deduced from Theorem 3 by the method of mathematical induction. In fact, take \(n = 1 \) and, according to Theorem 3, choose natural \(N > 1 \) so that (4) is valid. Assume \(n_1 = N \). If the sequence of numbers \(\{n_k\}_{k=1}^p \) has been already constructed, then for \(n = n_p \) we again choose \(N \) so that condition (4) holds, denote this number by \(n_{p+1} \). As the result, we obtain the sequence of numbers \(n_p \) such that

\[
\int_{\pi/2n_{p+1}}^{\pi/2n_p} (g(b, x) - 2\pi^{-2} v(b, x)) \, dx > 0.
\]

On each interval \((\pi/(2n_{p+1}), \pi/(2n_p))\) we take the point \(x_p \) where \(g(b, x_p) - 2\pi^{-2} v(b, x_p) > 0 \). Obviously, the sequence \(\{x_p\} \) constructed here satisfies all the conditions of Theorem 2.

We premise the proof of Theorem 3 with four lemmas.

Lemma 1. Let \(n, \nu \in \mathbb{N} \), \(\{\beta_k\}_{k \in \mathbb{N}} \in \mathfrak{M} \). In this case

\[
S = \sum_{k=(n(4\nu-3)+1)}^{n(4\nu+1)} \beta_k \cos \left(\frac{\pi k}{2n} \right) \leq 0.
\]

Proof. Denote \(A = n(4\nu - 3) \) and divide the sum \(S \) into two following parts:

\[
S = \sum_{k=A+1}^{A+2n} \beta_k \cos \left(\frac{\pi k}{2n} \right) + \sum_{k=A+2n+1}^{A+4n} \beta_k \cos \left(\frac{\pi k}{2n} \right) = 2n \sum_{j=1}^{2n} \beta_{A+j} \cos \left(\frac{\pi (A+j)}{2n} \right) + 2n \sum_{j=1}^{2n} \beta_{A+2n+j} \cos \left(\frac{\pi (A+2n+j)}{2n} \right) = 2n \left(\beta_{A+j} - \beta_{A+j} \right) \sin \left(\frac{\pi j}{2n} \right).
\]

Since \(\sin(\pi j/(2n)) > 0 \) for \(1 \leq j < 2n, \beta_{A+j} \leq \beta_{A+j} \), then all summands in the latter sum are not positive and hence \(S \leq 0 \). The lemma is proved.

Lemma 2. Let \(n, \nu \in \mathbb{N} \), \(\{\beta_k\}_{k \in \mathbb{N}} \in \mathfrak{M} \). In this case the following inequalities are valid:

\[
\sum_{k=2N}^{\infty} \beta_k \cos \left(\frac{\pi k}{2n} \right) \geq -N \beta_{2N}, \quad \left| \sum_{k=2N}^{\infty} \beta_k \cos \left(\frac{\pi k}{2n} \right) \right| \leq 2n \beta_{2N}.
\]

Proof. Divide the first sum into two following parts:

\[
\sum_{k=2N}^{3N} \beta_k \cos \left(\frac{\pi k}{2n} \right) + \sum_{k=3N+1}^{\infty} \beta_k \cos \left(\frac{\pi k}{2n} \right) = \sum_{k=2N}^{3N-1} \beta_k \cos \left(\frac{\pi k}{2n} \right) - \sum_{q=N+1}^{\infty} \beta_{2N+q} \cos \left(\frac{\pi q}{2n} \right).
\]

(5)

Taking into account the double inequality \(-1 \leq \cos(\pi k/(2N)) < 0, 2N \leq k < 3N \), and also the non-negativity and monotonicity of \(\{\beta_k\} \), we have

\[
\sum_{k=2N}^{3N-1} \beta_k \cos \left(\frac{\pi k}{2n} \right) \geq - \sum_{k=2N}^{3N-1} \beta_k \geq -N \beta_{2N}.
\]

(6)