Effect of the Nanoscale Structural Inhomogeneity on the Magnetic and Superconducting Characteristics of Fine-Grained YBa$_2$Cu$_3$O$_y$ HTSCs

L. G. Mamsurova, N. G. Trusevich, N. B. Butko, and A. A. Vishnev

Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, Moscow, 119991 Russia
e-mail: mamsurova@chph.ras.ru

Abstract—It has been experimentally established that the nanoscale structural inhomogeneity, inherent in fine-grained (0.4 ≤ D ≤ 2μm) high-temperature superconductors YBa$_2$Cu$_3$O$_y$ (y = 6.92, T_C = 92 K) and manifesting itself in partial interplane redistribution of oxygen [1, 2], changes the density of states near the Fermi level and decreases the coherence length and density of superconducting carriers in CuO$_2$ planes. The revealed relationship between the changes in these characteristics with respect to their equilibrium values corresponds to the relationship that might occur for conventional superconductors.

DOI: 10.3103/S1062873807080163

The previous X-ray and Mössbauer data [1–3] suggest that fine-grained high-temperature superconductors (HTSCs) of the YBa$_2$Cu$_3$O$_y$ type are unique objects in which the carrier density in superconducting planes can be changed not only through variation of the total oxygen content but also as a result of partial oxygen redistribution between different layers of the crystal structure. It was of interest to obtain experimental evidences for this suggestion.

The YBa$_2$Cu$_3$O$_y$ ($y = 6.92$, $T_C = 92$ K) samples under study, with micron and submicron average grain sizes, are characterized by a certain type of structural disorder [1, 2] at which, in view of the nonequilibrium synthesis conditions and, in particular, high-speed mechanism of structure formation, only some part of cations occupy equilibrium positions. In some part of unit cells, interchange between Y$^{3+}$ and Ba$^{2+}$ cations occurs, which leads to oxygen redistribution. The oxygen content increases in chain CuO$_2$ planes and decreases in superconducting CuO$_2$ planes. The smaller the average grain size in a sample, the higher the concentration of distorted unit cells and the larger the deviation of the average unit-cell volume $\langle V \rangle$ from its equilibrium value for a given y.

It is noteworthy that the scale of change in the volume V is nanoscopic, i.e., smaller than such characteristic parameters as the coherence length $\xi_{coh}(0)$ and the magnetic field penetration depth $\lambda_{pen}(0)$. Hence, the quantity $\langle V \rangle$ acquires a certain physical meaning. Its deviation from the equilibrium value characterizes the degree of structural disorder in the same way as the measured parameter δ (determination of the latter was described in detail in [1, 2]).

Figure 1 demonstrates the increase in the oxygen δ amount in chain planes and the decrease in the degree of orthorhombic distortion with a deviation of the average unit-cell volume $\langle V \rangle$ from the optimal value V_{opt}, which is characteristic of equilibrium samples with $y = 6.92$. Figure 1 shows also the values of y and T_C for the samples studied; the weak variation in these parameters does not correlate with the changes in $\langle V \rangle$.

Figure 2 shows the experimental dependences of the temperature-independent contribution χ_0 and the coherence length $\xi_{coh}(0)$ obtained for samples of the same series from the analysis of the magnetic susceptibility of the normal state [4] and the magnetization M (measured in the field $H = 6$ kOe at $T = 0.9T_C$) on $\langle V \rangle$.

As was shown in [5, 6], the temperature-independent contribution χ_0 includes several parts: electronic diamagnetism of the atomic core, orbital van Vleck paramagnetism, and spin paramagnetism of conduction electrons. The first two parts are independent of the oxygen content y, they are comparable in magnitude but have opposite signs. As a result, they compensate each other to a great extent (with a slightly superior diamagnetic part). In sum, the experimentally observed value χ_0 consists predominantly of the spin (Pauli) susceptibility of conduction electrons, which is determined by the density of states $N(0)$ near the Fermi level: $\chi_0^p \sim N(0)$.

Figure 2a demonstrates an almost linear dependence of the temperature-independent contribution to χ_0 on $\langle V \rangle$ for the samples studied. The value of χ_0 increases with a decrease in $\langle V \rangle$. Previously, a similar change in χ_0 was observed for equilibrium YBa$_2$Cu$_3$O$_y$ samples with an increase in the total oxygen content y [5]. It is known [7] that such an increase in y is accompanied by

a decrease in the unit-cell volume V. Figure 2a shows two values of χ_0 corresponding to the data in the literature [5] for the volumes V that are realized in equilibrium samples with $y = 6.92$ and 7. It can be seen that these values of χ_0 fall correlate with high accuracy with the presented linear dependence $\chi_0(V)$, a fact that may indicate its universal character.

The information about the coherence length $\xi_{ab}(0)$ at $T = 0$ K for the samples studied was obtained after subtraction of the background part of the magnetic susceptibility (containing, along with the contribution χ_0, additional contributions caused by the presence of structural defects [8]) from the experimental dependences $\chi_{\text{exp}}(T)$ and comparison of the resulting curve with the formula [9]

$$\frac{\Delta \chi_{ab}}{T} = \frac{A}{\varepsilon} \left[1 + \frac{B^2}{\varepsilon} \right]^{-1/2},$$

where $A = 2\mu_0 \pi k_B^2 \xi_{ab}^2(0)/3 \Phi_0 c$, $B = (4\xi_{ab}(0)/\gamma c)^2$, $\xi_{ab}(0)$ is the coherence length in the ab plane at $T = 0$ K, γ is the anisotropy parameter, Φ_0 is the magnetic flux quan-