Dependence of the Curie Temperature on the Effective de Gennes Factor in Ferromagnets with Exchange Frustration

E. G. Sharoyan
Institute for Physical Research, NAS of Armenia, Ashtarak, Armenia
Received June 15, 2007

Abstract—Considering the magneto-diluted gadolinium-containing Adamian alloys, it is shown that the dependence of the Curie temperature on the de Gennes factor \(\xi = c(g - 1)J(J + 1) \) can be expanded for ferromagnets with the exchange frustration. It is shown that in this case it is necessary to replace \(J \) by \(S_{\text{eff}} \) and that the linear dependence of \(T_C \) on \(\xi_{\text{eff}} \) remains up to the pure spin-glass state with \(S_{\text{eff}} = 0 \).

PACS numbers: 75.30.Et
DOI: 10.3103/S1068337207060060
Key words: ferromagnets, exchange frustration, Curie temperature

Temperatures of magnetic transition into the magnetically ordered ferro- or antiferromagnetic states \((T_{\text{Curie}} \equiv T_C, T_{\text{Neel}} \equiv T_N) \) in rare-earth metals (Re) and their alloys are proportional to the atomic concentration of magnetic ions \(c \) and are well described by the de Gennes factor \(\xi = c(g - 1)J(J + 1) \), where \(g \) is the Lande factor and \(J \) is the total angular momentum [1]. Some experimentally observed deviations of \(T_C \) and \(T_N \) from a linear dependence can be explained by changes in the lattice parameter [2] as well as by the variation of the band structure of rare-earth alloys [3]. It is evident that both mechanisms influence the Curie temperature. We believe that the dependence of \(T_C \) on the lattice parameter is more essential because the exchange interactions between localized rare-earth ions, which are realized by the conduction electrons (the Ruderman–Kittel–Kasuya–Yosida mechanism [4]), directly depend on the distance between them.

In [5] V. Adamian has proposed a method to obtain intermetallic solid solutions with a CsCl crystal structure, in which the cubic lattice constant \(a_0 \) remains unchanged with variations of the alloy composition. All distances between magnetic ions are determined by means of \(a_0 \). Adamian and coworkers have synthesized and investigated a number of pseudobinary gadolinium-contained alloys \([\text{Gd}]_{1-x}[(\text{La}, \text{Y})_x][\text{M}]_{1-y}[\text{M}_2]_y\]

\[\text{A system} \equiv [\text{Gd}_{0.22}(\text{La}_{1-x}\text{Y}_x)_{0.78}][\text{Zn}_{1-x}\text{Cd}_x], \quad 0 \leq x \leq 1, \]

\[\text{E system} \equiv [\text{Gd}_{0.22}(\text{La}_{1-x}\text{Y}_x)_{0.78}][\text{Zn}_{1-x}(\text{In}_{0.5}\text{Cu}_{0.5})_x], \quad 0 \leq x \leq 0.5, \]

\[\text{D system} \equiv [\text{Gd}_x(\text{La}/\text{Y})_{1-x}][\text{Zn}_{0.15}\text{Cd}_{0.85}], \quad 0.22 \leq x \leq 1. \]

In these alloys only the Gd\(^{3+}\) ions \((L = 0, S = 7/2) \) are magnetic, while the other ions \((\text{La}^{3+}, \text{Y}^{3+}, \text{In}^{3+}, \text{Zn}^{2+}, \text{Cd}^{2+}, \text{and Cu}^{1+}) \) are diamagnetic. The constant value of \(a_0 \) in the A and E systems is achieved by simultaneous substitutions of ions in the rare-earth and metallic sublattices \((\text{Zn}^{2+} \text{by Cd}^{2+} \text{or by (In}^{3+} + \text{Cu}^{1+}) \text{in combination with La}^{3+} \text{by Y}^{3+} \). The constancy of the lattice parameter in the D system is achieved by the variation of the Y/La ratio at the variation of the gadolinium concentration. For all three systems of alloys the measured cubic lattice constant \(a_0 = (3.741 \pm 0.001) \). In the A and E systems the concentration of the magnetic Gd\(^{3+}\) ions is constant \((c = 0.22) \), while in the D system it changes in the range of \(0.22 \leq c \leq 1 \) \((c \equiv x) \).
Fig. 1. Dependences of the Curie temperature T_C and spontaneous magnetization μ_{s0} on the concentration of Gd$^{3+}$ ions c: $\Delta - D = [\text{Gd}_{0.22}(\text{La}_{1-x}\text{Y}_x)_{0.78}]\text{[Zn}_{0.15}\text{Cd}_{0.85}]$, $0.22 \leq c \leq 1$; ○ - $A = [\text{Gd}_{0.22}(\text{La}_{1-x}\text{Y}_x)_{0.78}]\text{[Zn}_{1-x}\text{Cd}_x]$, $0 \leq x \leq 1$; ▲ - $E = [\text{Gd}_{0.22}(\text{La}_{1-x}\text{Y}_x)_{0.78}]\text{[Zn}_{1-x}([\text{In}_{0.5}\text{Cu}_{0.5}])]$, $0 \leq x \leq 0.5$.

Figure 1 presents the c-dependence of T_C for all three systems. The linear dependence of T on c (the de Gennes dependence) is well obeyed for the D system. However, for the A and E alloys, for which $c = 0.22$, one observes different T_C depending on the composition of diamagnetic ions x. In the A system T_C varies from 13 K to 50 K, while in the E system it changes from 13 K to 0 K. Figure 1 shows also the c-dependence of the spontaneous magnetization μ_{s0} at $T = 0$ K. The dependences of T_C and μ_{s0} on x at $c = 0.22$ are presented in Fig. 2. In [6–8] we have shown that the “magnetic anomalies” in the A and E systems are caused by the alloying effects, i.e., by the dependences of the mean free path of electrons and electron effective mass on x. Note also that the Gd$^{3+}$ ions concentration $c = 0.22$ in the A and E alloys is close to the percolation threshold and that the essentially different dependences of T_C and μ_{s0} at the range of $x \sim 0.5$ (a collinear ferromagnet with $\mu_{s0} = 7\mu_B$ and $T_C = 50$ K in the A system and a spin glass with $\mu_{s0} = 0$ and $T_C = 0$ K in the E system) are determined by the compositional disorder of nonmagnetic ions at isoelectronic substitutions in the first case and by the charge disorder at nonisoelectronic substitutions in the second case [7, 8]. In both systems we observe in fact the ferromagnetism, which is partially suppressed due to the frustration of exchange interactions (ferromagnetism with the exchange frustration).

Fig. 2. Dependences of T_C and μ_{s0} on x in the A and E systems at $c = 0.22$.